Spaces:
Running
on
A10G
Running
on
A10G
Linoy Tsaban
commited on
Commit
·
6494dc6
1
Parent(s):
17db690
Update app.py
Browse files
app.py
CHANGED
@@ -16,17 +16,17 @@ from transformers import AutoProcessor, BlipForConditionalGeneration
|
|
16 |
# load pipelines
|
17 |
sd_model_id = "stabilityai/stable-diffusion-2-1-base"
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
-
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
20 |
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
|
21 |
-
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
22 |
blip_processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
23 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
|
24 |
|
25 |
|
26 |
|
27 |
## IMAGE CPATIONING ##
|
28 |
def caption_image(input_image):
|
29 |
-
inputs = blip_processor(images=input_image, return_tensors="pt").to(device)
|
30 |
pixel_values = inputs.pixel_values
|
31 |
|
32 |
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50)
|
|
|
16 |
# load pipelines
|
17 |
sd_model_id = "stabilityai/stable-diffusion-2-1-base"
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id,torch_dtype=torch.float16).to(device)
|
20 |
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
|
21 |
+
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id, torch_dtype=torch.float16).to(device)
|
22 |
blip_processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
23 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base",torch_dtype=torch.float16).to(device)
|
24 |
|
25 |
|
26 |
|
27 |
## IMAGE CPATIONING ##
|
28 |
def caption_image(input_image):
|
29 |
+
inputs = blip_processor(images=input_image, return_tensors="pt").to(device, torch.float16)
|
30 |
pixel_values = inputs.pixel_values
|
31 |
|
32 |
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50)
|