File size: 10,673 Bytes
9d22eee
2a5f9fb
3449f84
df66f6e
4445ad2
c0fa950
df66f6e
9d22eee
 
 
 
 
 
 
 
 
36e3010
c0fa950
 
3449f84
 
 
 
 
c0fa950
 
9d22eee
c0fa950
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
9d22eee
 
 
 
 
 
 
 
 
 
 
 
f976f1c
b762711
9d22eee
 
 
9b2e755
9d22eee
9b2e755
 
359d8a9
9d22eee
359d8a9
71ecfbb
 
5639a81
9d22eee
 
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2e131
b762711
36e3010
 
 
 
 
 
 
2a5f9fb
 
460ecf2
1b2e131
ec3a730
 
36e3010
 
 
 
359d8a9
 
2a5f9fb
 
36e3010
f976f1c
36e3010
1b2e131
f976f1c
 
 
 
36e3010
f976f1c
c0fa950
 
 
36e3010
b1a1395
 
 
 
 
 
 
 
 
 
 
1b2e131
36e3010
b762711
36e3010
 
 
 
 
 
b1a1395
 
9b2e755
1b2e131
36e3010
 
 
 
 
 
359d8a9
c0fa950
b1a1395
2a5f9fb
36e3010
f976f1c
36e3010
1b2e131
f976f1c
 
 
 
 
36e3010
f976f1c
c0fa950
 
36e3010
2a5f9fb
9d22eee
2a5f9fb
9d22eee
2a5f9fb
 
 
9d22eee
395f537
 
9839977
 
9d22eee
2a5f9fb
 
 
 
 
 
 
 
395f537
155aef4
2a5f9fb
 
9839977
 
 
 
2a5f9fb
 
9d22eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5f9fb
 
 
 
9b2e755
 
2a5f9fb
 
 
 
b1a1395
2a5f9fb
 
 
 
 
 
 
 
 
 
 
71ecfbb
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from dataclasses import dataclass, make_dataclass
from enum import Enum
from typing import List
import pandas as pd
from yaml import safe_load
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, TASK_CONFIG

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str
    baseline: float = 0.0
    human_baseline: float = None
    expert_human_baseline: float = None
    few_shot: int = None
    limit: int = None
    task_list: List[str] = None
    link: str = None
    description: str = None
    sources: List[str] = None
    baseline_sources: List[str] = None

Tasks = Enum('Tasks', {k: Task(**v) for k, v in TASK_CONFIG['tasks'].items()})

# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    dummy: bool = False

auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
auto_eval_column_dict.append(["eval_time", ColumnContent, ColumnContent("Evaluation Time (s)", "number", False)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("Model Name", "str", False, dummy=True)])
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
    auto_eval_column_dict.append(["original_benchmark_average", ColumnContent, ColumnContent("πŸ€— Leaderboard Average", "number", False)])
auto_eval_column_dict.append(["npm", ColumnContent, ColumnContent("NPM (Average) ⬆️", "number", False)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)

@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)


baseline_row = {
    AutoEvalColumn.model.name: "<p>Baseline</p>",
    AutoEvalColumn.revision.name: "N/A",
    AutoEvalColumn.precision.name: "?",
    AutoEvalColumn.merged.name: False,
    #AutoEvalColumn.average.name: 31.0,
    #AutoEvalColumn.arc.name: 25.0,
    #AutoEvalColumn.hellaswag.name: 25.0,
    #AutoEvalColumn.mmlu.name: 25.0,
    #AutoEvalColumn.truthfulqa.name: 25.0,
    #AutoEvalColumn.winogrande.name: 50.0,
    #AutoEvalColumn.gsm8k.name: 0.21,
    AutoEvalColumn.dummy.name: "baseline",
    AutoEvalColumn.model_type.name: "",
    AutoEvalColumn.flagged.name: False,
    AutoEvalColumn.model_type_symbol.name: "?",
    AutoEvalColumn.architecture.name: None,
    AutoEvalColumn.weight_type.name: None,
    AutoEvalColumn.params.name: 0,
    AutoEvalColumn.likes.name: 0,
    AutoEvalColumn.license.name: "",
    AutoEvalColumn.still_on_hub.name: False,
    AutoEvalColumn.moe.name: False,
    AutoEvalColumn.eval_time.name: 0.0
}

baseline_list = []
npm = []
for task in Tasks:
    baseline_row[task.value.col_name] = task.value.baseline
    res = task.value.baseline
    if res is not None and (isinstance(res, float) or isinstance(res, int)):
        baseline_list.append(res)
        npm.append((res - task.value.baseline) / (100 - task.value.baseline))
baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
baseline_row[AutoEvalColumn.npm.name] = round(sum(npm) / len(npm), 2)

#if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
baseline_row["πŸ€— Leaderboard Average"] = None

# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
# Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public
# GSM8K: paper
# Define the human baselines
human_baseline_row = {
    AutoEvalColumn.model.name: "<p>Human performance</p>",
    AutoEvalColumn.revision.name: "N/A",
    AutoEvalColumn.precision.name: "?",
    #AutoEvalColumn.average.name: 92.75,
    AutoEvalColumn.merged.name: False,
    #AutoEvalColumn.arc.name: 80.0,
    #AutoEvalColumn.hellaswag.name: 95.0,
    #AutoEvalColumn.mmlu.name: 89.8,
    #AutoEvalColumn.truthfulqa.name: 94.0,
    #AutoEvalColumn.winogrande.name: 94.0,
    #AutoEvalColumn.gsm8k.name: 100,
    AutoEvalColumn.dummy.name: "human_baseline",
    AutoEvalColumn.model_type.name: "",
    AutoEvalColumn.flagged.name: False,
    AutoEvalColumn.model_type_symbol.name: "?",
    AutoEvalColumn.architecture.name: None,
    AutoEvalColumn.weight_type.name: None,
    AutoEvalColumn.params.name: 0,
    AutoEvalColumn.likes.name: 0,
    AutoEvalColumn.license.name: "",
    AutoEvalColumn.still_on_hub.name: False,
    AutoEvalColumn.moe.name: False,
    AutoEvalColumn.eval_time.name: 0.0,
}

baseline_list = []
npm = []
for task in Tasks:
    human_baseline_row[task.value.col_name] = task.value.human_baseline
    res = task.value.human_baseline
    if res is None or not (isinstance(res, float) or isinstance(res, int)):
        res = 95.0
    baseline_list.append(res)
    npm.append((res - task.value.baseline) / (100 - task.value.baseline))
human_baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
human_baseline_row[AutoEvalColumn.npm.name] = round(sum(npm) / len(npm), 2)
#if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
human_baseline_row["πŸ€— Leaderboard Average"] = None

@dataclass
class ModelDetails:
    name: str
    symbol: str = "" # emoji, only for the model type


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟒")
    LA = ModelDetails(name="language adapted models (FP, FT, ...)", symbol="πŸ†Ž")
    FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="πŸ”Ά")
    chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="πŸ’¬")
    merges = ModelDetails(name="base merges and moerges", symbol="🀝")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "πŸ”Ά" in type:
            return ModelType.FT
        if "language" in type or "πŸ†Ž" in type:
            return ModelType.LA
        if "pretrained" in type or "🟒" in type:
            return ModelType.PT
        if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "β­•", "πŸ’¬"]]):
            return ModelType.chat
        if "merge" in type or "🀝" in type:
            return ModelType.merges
        return ModelType.Unknown

class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")

class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    qt_8bit = ModelDetails("8bit")
    qt_4bit = ModelDetails("4bit")
    qt_GPTQ = ModelDetails("GPTQ")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["8bit"]:
            return Precision.qt_8bit
        if precision in ["4bit"]:
            return Precision.qt_4bit
        if precision in ["GPTQ", "None"]:
            return Precision.qt_GPTQ
        return Precision.Unknown
        



# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]

NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}

#Original HF LEaderboard tasks and metrics
ORIGINAL_TASKS = [
    ("arc:challenge", "acc_norm"),
    ("hellaswag", "acc_norm"),
    ("hendrycksTest", "acc"),
    ("truthfulqa:mc", "mc2"),
    ("winogrande", "acc"),
    ("gsm8k", "acc")
]