Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import os | |
from datetime import datetime, timezone | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import HfApi | |
from src.assets.css_html_js import custom_css, get_window_url_params | |
from src.assets.text_content import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display_models.get_model_metadata import DO_NOT_SUBMIT_MODELS, ModelType | |
from src.display_models.utils import ( | |
AutoEvalColumn, | |
EvalQueueColumn, | |
fields, | |
styled_error, | |
styled_message, | |
styled_warning, | |
) | |
from src.load_from_hub import get_evaluation_queue_df, get_leaderboard_df, is_model_on_hub, load_all_info_from_hub | |
from src.rate_limiting import user_submission_permission | |
pd.set_option("display.precision", 1) | |
# clone / pull the lmeh eval data | |
H4_TOKEN = os.environ.get("H4_TOKEN", None) | |
QUEUE_REPO = "open-llm-leaderboard/requests" | |
RESULTS_REPO = "open-llm-leaderboard/results" | |
PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests" | |
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results" | |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) | |
EVAL_REQUESTS_PATH = "eval-queue" | |
EVAL_RESULTS_PATH = "eval-results" | |
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private" | |
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private" | |
api = HfApi(token=H4_TOKEN) | |
def restart_space(): | |
api.restart_space(repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN) | |
# Rate limit variables | |
RATE_LIMIT_PERIOD = 7 | |
RATE_LIMIT_QUOTA = 5 | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
if not IS_PUBLIC: | |
COLS.insert(2, AutoEvalColumn.precision.name) | |
TYPES.insert(2, AutoEvalColumn.precision.type) | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [ | |
c.name | |
for c in [ | |
AutoEvalColumn.arc, | |
AutoEvalColumn.hellaswag, | |
AutoEvalColumn.mmlu, | |
AutoEvalColumn.truthfulqa, | |
] | |
] | |
## LOAD INFO FROM HUB | |
eval_queue, requested_models, eval_results, users_to_submission_dates = load_all_info_from_hub( | |
QUEUE_REPO, RESULTS_REPO, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH | |
) | |
if not IS_PUBLIC: | |
(eval_queue_private, requested_models_private, eval_results_private, _) = load_all_info_from_hub( | |
PRIVATE_QUEUE_REPO, | |
PRIVATE_RESULTS_REPO, | |
EVAL_REQUESTS_PATH_PRIVATE, | |
EVAL_RESULTS_PATH_PRIVATE, | |
) | |
else: | |
eval_queue_private, eval_results_private = None, None | |
original_df = get_leaderboard_df(eval_results, eval_results_private, COLS, BENCHMARK_COLS) | |
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard | |
to_be_dumped = f"models = {repr(models)}\n" | |
with open("models_backlinks.py", "w") as f: | |
f.write(to_be_dumped) | |
print(to_be_dumped) | |
leaderboard_df = original_df.copy() | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS) | |
## INTERACTION FUNCTIONS | |
def add_new_eval( | |
model: str, | |
base_model: str, | |
revision: str, | |
precision: str, | |
private: bool, | |
weight_type: str, | |
model_type: str, | |
): | |
precision = precision.split(" ")[0] | |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
num_models_submitted_in_period = user_submission_permission(model, users_to_submission_dates, RATE_LIMIT_PERIOD) | |
if num_models_submitted_in_period > RATE_LIMIT_QUOTA: | |
error_msg = f"Organisation or user `{model.split('/')[0]}`" | |
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard " | |
error_msg += f"in the last {RATE_LIMIT_PERIOD} days.\n" | |
error_msg += "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard π€" | |
return styled_error(error_msg) | |
if model_type is None or model_type == "": | |
return styled_error("Please select a model type.") | |
# check the model actually exists before adding the eval | |
if revision == "": | |
revision = "main" | |
if weight_type in ["Delta", "Adapter"]: | |
base_model_on_hub, error = is_model_on_hub(base_model, revision) | |
if not base_model_on_hub: | |
return styled_error(f'Base model "{base_model}" {error}') | |
if not weight_type == "Adapter": | |
model_on_hub, error = is_model_on_hub(model, revision) | |
if not model_on_hub: | |
return styled_error(f'Model "{model}" {error}') | |
print("adding new eval") | |
eval_entry = { | |
"model": model, | |
"base_model": base_model, | |
"revision": revision, | |
"private": private, | |
"precision": precision, | |
"weight_type": weight_type, | |
"status": "PENDING", | |
"submitted_time": current_time, | |
"model_type": model_type, | |
} | |
user_name = "" | |
model_path = model | |
if "/" in model: | |
user_name = model.split("/")[0] | |
model_path = model.split("/")[1] | |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
os.makedirs(OUT_DIR, exist_ok=True) | |
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json" | |
# Check if the model has been forbidden: | |
if out_path.split("eval-queue/")[1] in DO_NOT_SUBMIT_MODELS: | |
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.") | |
# Check for duplicate submission | |
if f"{model}_{revision}_{precision}" in requested_models: | |
return styled_warning("This model has been already submitted.") | |
with open(out_path, "w") as f: | |
f.write(json.dumps(eval_entry)) | |
api.upload_file( | |
path_or_fileobj=out_path, | |
path_in_repo=out_path.split("eval-queue/")[1], | |
repo_id=QUEUE_REPO, | |
repo_type="dataset", | |
commit_message=f"Add {model} to eval queue", | |
) | |
# remove the local file | |
os.remove(out_path) | |
return styled_message( | |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." | |
) | |
# Basics | |
def refresh() -> list[pd.DataFrame]: | |
leaderboard_df = get_leaderboard_df(eval_results, eval_results_private, COLS, BENCHMARK_COLS) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS) | |
return ( | |
leaderboard_df, | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) | |
def change_tab(query_param: str): | |
query_param = query_param.replace("'", '"') | |
query_param = json.loads(query_param) | |
if isinstance(query_param, dict) and "tab" in query_param and query_param["tab"] == "evaluation": | |
return gr.Tabs.update(selected=1) | |
else: | |
return gr.Tabs.update(selected=0) | |
# Searching and filtering | |
def search_table(df: pd.DataFrame, current_columns_df: pd.DataFrame, query: str) -> pd.DataFrame: | |
current_columns = current_columns_df.columns | |
if AutoEvalColumn.model_type.name in current_columns: | |
filtered_df = df[ | |
(df[AutoEvalColumn.dummy.name].str.contains(query, case=False)) | |
| (df[AutoEvalColumn.model_type.name].str.contains(query, case=False)) | |
] | |
else: | |
filtered_df = df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
return filtered_df[current_columns] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
AutoEvalColumn.model_type_symbol.name, | |
AutoEvalColumn.model.name, | |
] | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] | |
] | |
return filtered_df | |
NUMERIC_INTERVALS = { | |
"< 1.5B": (0, 1.5), | |
"~3B": (1.5, 5), | |
"~7B": (6, 11), | |
"~13B": (12, 15), | |
"~35B": (16, 55), | |
"60B+": (55, 10000), | |
} | |
def filter_models( | |
df: pd.DataFrame, current_columns_df: pd.DataFrame, type_query: list, size_query: list, show_deleted: bool | |
) -> pd.DataFrame: | |
current_columns = current_columns_df.columns | |
# Show all models | |
if show_deleted: | |
filtered_df = df[current_columns] | |
else: # Show only still on the hub models | |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True][current_columns] | |
type_emoji = [t[0] for t in type_query] | |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
numeric_interval = [NUMERIC_INTERVALS[s] for s in size_query] | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
filtered_df = filtered_df[params_column.between(numeric_interval[0][0], numeric_interval[-1][1])] | |
return filtered_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c | |
for c in COLS | |
if c | |
not in [ | |
AutoEvalColumn.dummy.name, | |
AutoEvalColumn.model.name, | |
AutoEvalColumn.model_type_symbol.name, | |
AutoEvalColumn.still_on_hub.name, | |
] | |
], | |
value=[ | |
c | |
for c in COLS_LITE | |
if c | |
not in [ | |
AutoEvalColumn.dummy.name, | |
AutoEvalColumn.model.name, | |
AutoEvalColumn.model_type_symbol.name, | |
AutoEvalColumn.still_on_hub.name, | |
] | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Row(): | |
deleted_models_visibility = gr.Checkbox( | |
value=True, label="Show gated/private/deleted models", interactive=True | |
) | |
with gr.Column(min_width=320): | |
search_bar = gr.Textbox( | |
placeholder="π Search for your model and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Box(elem_id="box-filter"): | |
filter_columns_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=[ | |
ModelType.PT.to_str(), | |
ModelType.FT.to_str(), | |
ModelType.IFT.to_str(), | |
ModelType.RL.to_str(), | |
], | |
value=[ | |
ModelType.PT.to_str(), | |
ModelType.FT.to_str(), | |
ModelType.IFT.to_str(), | |
ModelType.RL.to_str(), | |
], | |
interactive=True, | |
elem_id="filter-columns-type", | |
) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_id="filter-columns-size", | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[ | |
[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] | |
+ shown_columns.value | |
+ [AutoEvalColumn.dummy.name] | |
], | |
headers=[ | |
AutoEvalColumn.model_type_symbol.name, | |
AutoEvalColumn.model.name, | |
] | |
+ shown_columns.value | |
+ [AutoEvalColumn.dummy.name], | |
datatype=TYPES, | |
max_rows=None, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df, | |
headers=COLS, | |
datatype=TYPES, | |
max_rows=None, | |
visible=False, | |
) | |
search_bar.submit( | |
search_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
leaderboard_table, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
shown_columns.change( | |
select_columns, | |
[hidden_leaderboard_table_for_search, shown_columns], | |
leaderboard_table, | |
queue=False, | |
) | |
filter_columns_type.change( | |
filter_models, | |
[ | |
hidden_leaderboard_table_for_search, | |
leaderboard_table, | |
filter_columns_type, | |
filter_columns_size, | |
deleted_models_visibility, | |
], | |
leaderboard_table, | |
queue=False, | |
) | |
filter_columns_size.change( | |
filter_models, | |
[ | |
hidden_leaderboard_table_for_search, | |
leaderboard_table, | |
filter_columns_type, | |
filter_columns_size, | |
deleted_models_visibility, | |
], | |
leaderboard_table, | |
queue=False, | |
) | |
deleted_models_visibility.change( | |
filter_models, | |
[ | |
hidden_leaderboard_table_for_search, | |
leaderboard_table, | |
filter_columns_type, | |
filter_columns_size, | |
deleted_models_visibility, | |
], | |
leaderboard_table, | |
queue=False, | |
) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.components.Dataframe( | |
value=finished_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
max_rows=5, | |
) | |
with gr.Accordion( | |
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.components.Dataframe( | |
value=running_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
max_rows=5, | |
) | |
with gr.Accordion( | |
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.components.Dataframe( | |
value=pending_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
max_rows=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
revision_name_textbox = gr.Textbox(label="revision", placeholder="main") | |
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) | |
model_type = gr.Dropdown( | |
choices=[ | |
ModelType.PT.to_str(" : "), | |
ModelType.FT.to_str(" : "), | |
ModelType.IFT.to_str(" : "), | |
ModelType.RL.to_str(" : "), | |
], | |
label="Model type", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
with gr.Column(): | |
precision = gr.Dropdown( | |
choices=[ | |
"float16", | |
"bfloat16", | |
"8bit (LLM.int8)", | |
"4bit (QLoRA / FP4)", | |
"GPTQ" | |
], | |
label="Precision", | |
multiselect=False, | |
value="float16", | |
interactive=True, | |
) | |
weight_type = gr.Dropdown( | |
choices=["Original", "Delta", "Adapter"], | |
label="Weights type", | |
multiselect=False, | |
value="Original", | |
interactive=True, | |
) | |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
model_name_textbox, | |
base_model_name_textbox, | |
revision_name_textbox, | |
precision, | |
private, | |
weight_type, | |
model_type, | |
], | |
submission_result, | |
) | |
with gr.Row(): | |
refresh_button = gr.Button("Refresh") | |
refresh_button.click( | |
refresh, | |
inputs=[], | |
outputs=[ | |
leaderboard_table, | |
finished_eval_table, | |
running_eval_table, | |
pending_eval_table, | |
], | |
api_name='refresh' | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
).style(show_copy_button=True) | |
dummy = gr.Textbox(visible=False) | |
demo.load( | |
change_tab, | |
dummy, | |
tabs, | |
_js=get_window_url_params, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=3600) | |
scheduler.start() | |
demo.queue(concurrency_count=40).launch() | |