Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
eduagarcia
commited on
Commit
β’
1dbfacb
1
Parent(s):
6db2f85
Add proprietary model results v1
Browse files- app.py +7 -4
- proprietary_models_results.json +107 -0
- src/display/about.py +0 -2
- src/display/utils.py +30 -17
- src/populate.py +3 -1
- src/scripts/update_all_request_files.py +1 -1
- tasks_config/pt_config.yaml +4 -9
app.py
CHANGED
@@ -198,6 +198,9 @@ def filter_models(
|
|
198 |
if "Flagged" in hide_models:
|
199 |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
200 |
|
|
|
|
|
|
|
201 |
type_emoji = [t[0] for t in type_query]
|
202 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
203 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
@@ -231,7 +234,7 @@ leaderboard_df = filter_models(
|
|
231 |
size_query=list(NUMERIC_INTERVALS.keys()),
|
232 |
precision_query=[i.value.name for i in Precision],
|
233 |
language_query=[i.value.name for i in Language],
|
234 |
-
hide_models=["
|
235 |
)
|
236 |
|
237 |
demo = gr.Blocks(css=custom_css)
|
@@ -268,8 +271,8 @@ with demo:
|
|
268 |
with gr.Row():
|
269 |
hide_models = gr.CheckboxGroup(
|
270 |
label="Hide models",
|
271 |
-
choices = ["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
|
272 |
-
value=["
|
273 |
interactive=True
|
274 |
)
|
275 |
with gr.Column(min_width=320):
|
@@ -465,7 +468,7 @@ with demo:
|
|
465 |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
466 |
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
|
467 |
model_type = gr.Dropdown(
|
468 |
-
choices=[t.to_str(" : ") for t in ModelType if t
|
469 |
label="Model type",
|
470 |
multiselect=False,
|
471 |
value=ModelType.FT.to_str(" : "),
|
|
|
198 |
if "Flagged" in hide_models:
|
199 |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
200 |
|
201 |
+
if "Proprietary" in hide_models:
|
202 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.license.name] != "Proprietary"]
|
203 |
+
|
204 |
type_emoji = [t[0] for t in type_query]
|
205 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
206 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
|
|
234 |
size_query=list(NUMERIC_INTERVALS.keys()),
|
235 |
precision_query=[i.value.name for i in Precision],
|
236 |
language_query=[i.value.name for i in Language],
|
237 |
+
hide_models=["Flagged"], # "Private or deleted", "Contains a merge/moerge", "Flagged"
|
238 |
)
|
239 |
|
240 |
demo = gr.Blocks(css=custom_css)
|
|
|
271 |
with gr.Row():
|
272 |
hide_models = gr.CheckboxGroup(
|
273 |
label="Hide models",
|
274 |
+
choices = ["Proprietary", "Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
|
275 |
+
value=["Flagged"],
|
276 |
interactive=True
|
277 |
)
|
278 |
with gr.Column(min_width=320):
|
|
|
468 |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
469 |
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
|
470 |
model_type = gr.Dropdown(
|
471 |
+
choices=[t.to_str(" : ") for t in ModelType if t not in [ModelType.Unknown, ModelType.proprietary]],
|
472 |
label="Model type",
|
473 |
multiselect=False,
|
474 |
value=ModelType.FT.to_str(" : "),
|
proprietary_models_results.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"model": "sabia-2-small",
|
4 |
+
"name": "SabiΓ‘-2 Small",
|
5 |
+
"link": "https://www.maritaca.ai/",
|
6 |
+
"date": "2024-04-12",
|
7 |
+
"status": "full",
|
8 |
+
"main_language": "Portuguese",
|
9 |
+
"result_metrics": {
|
10 |
+
"enem_challenge": 0.7172848145556333,
|
11 |
+
"bluex": 0.5549374130737135,
|
12 |
+
"oab_exams": 0.6364464692482916,
|
13 |
+
"assin2_sts": 0.7053302344881672,
|
14 |
+
"assin2_rte": 0.9121728362223306,
|
15 |
+
"faquad_nli": 0.7575848453041435,
|
16 |
+
"hatebr_offensive": 0.5025338637870607,
|
17 |
+
"portuguese_hate_speech": 0.4650217578860529,
|
18 |
+
"tweetsentbr": 0.533977453070735
|
19 |
+
},
|
20 |
+
"result_metrics_average": 0.6428099652929031,
|
21 |
+
"result_metrics_npm": 0.43960062672137007
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"model": "sabia-2-medium",
|
25 |
+
"name": "SabiΓ‘-2 Medium",
|
26 |
+
"link": "https://www.maritaca.ai/",
|
27 |
+
"date": "2024-04-13",
|
28 |
+
"status": "full",
|
29 |
+
"main_language": "Portuguese",
|
30 |
+
"result_metrics": {
|
31 |
+
"enem_challenge": 0.8180545836249126,
|
32 |
+
"bluex": 0.717663421418637,
|
33 |
+
"oab_exams": 0.7321184510250569,
|
34 |
+
"assin2_sts": 0.7804108376537757,
|
35 |
+
"assin2_rte": 0.923459363368553,
|
36 |
+
"faquad_nli": 0.7657657657657658,
|
37 |
+
"hatebr_offensive": 0.8349989882997386,
|
38 |
+
"portuguese_hate_speech": 0.7379326358571694,
|
39 |
+
"tweetsentbr": 0.7269533040381798
|
40 |
+
},
|
41 |
+
"result_metrics_average": 0.7819285945613098,
|
42 |
+
"result_metrics_npm": 0.6676121786922709
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"model": "gpt-3.5-turbo-0125",
|
46 |
+
"name": "GPT-3.5 Turbo (0125)",
|
47 |
+
"link": "https://www.openai.com/",
|
48 |
+
"date": "2024-03-08",
|
49 |
+
"status": "full",
|
50 |
+
"main_language": "English",
|
51 |
+
"result_metrics": {
|
52 |
+
"enem_challenge": 0.7214835549335199,
|
53 |
+
"bluex": 0.6244784422809457,
|
54 |
+
"oab_exams": 0.5430523917995445,
|
55 |
+
"assin2_sts": 0.7378460201077941,
|
56 |
+
"assin2_rte": 0.8823038414050672,
|
57 |
+
"faquad_nli": 0.746353108609074,
|
58 |
+
"hatebr_offensive": 0.8056205941193919,
|
59 |
+
"portuguese_hate_speech": 0.7363692688971499,
|
60 |
+
"tweetsentbr": 0.7028981330613626
|
61 |
+
},
|
62 |
+
"result_metrics_average": 0.7222672616904278,
|
63 |
+
"result_metrics_npm": 0.5841504766165372
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"model": "claude-3-haiku-20240307",
|
67 |
+
"name": "Claude-3 Haiku (20240307)",
|
68 |
+
"link": "https://www.claude.ai/",
|
69 |
+
"date": "2024-04-13",
|
70 |
+
"status": "full",
|
71 |
+
"main_language": "English",
|
72 |
+
"result_metrics": {
|
73 |
+
"enem_challenge": 0.7718684394681595,
|
74 |
+
"bluex": 0.6662030598052852,
|
75 |
+
"oab_exams": 0.626879271070615,
|
76 |
+
"assin2_sts": 0.7892124744168747,
|
77 |
+
"assin2_rte": 0.9184462138121732,
|
78 |
+
"faquad_nli": 0.6340996599941455,
|
79 |
+
"hatebr_offensive": 0.8023698759439051,
|
80 |
+
"portuguese_hate_speech": 0.7342166269560177,
|
81 |
+
"tweetsentbr": 0.5477486799750156
|
82 |
+
},
|
83 |
+
"result_metrics_average": 0.7212271446046878,
|
84 |
+
"result_metrics_npm": 0.5735261536314672
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"model": "gemini-1.0-pro",
|
88 |
+
"name": "Gemini 1.0 Pro",
|
89 |
+
"link": "https://ai.google.dev/",
|
90 |
+
"date": "2024-03-08",
|
91 |
+
"status": "full",
|
92 |
+
"main_language": "English",
|
93 |
+
"result_metrics": {
|
94 |
+
"enem_challenge": 0.7130860741777467,
|
95 |
+
"bluex": 0.5869262865090403,
|
96 |
+
"oab_exams": 0.4988610478359909,
|
97 |
+
"assin2_sts": 0.7058831239763663,
|
98 |
+
"assin2_rte": 0.8945993304651698,
|
99 |
+
"faquad_nli": 0.7070913567220611,
|
100 |
+
"hatebr_offensive": 0.8086330094493972,
|
101 |
+
"portuguese_hate_speech": 0.699119105113102,
|
102 |
+
"tweetsentbr": 0.6803240476660983
|
103 |
+
},
|
104 |
+
"result_metrics_average": 0.6993914868794414,
|
105 |
+
"result_metrics_npm": 0.551208000273598
|
106 |
+
}
|
107 |
+
]
|
src/display/about.py
CHANGED
@@ -19,8 +19,6 @@ if 'readme' in TASK_CONFIG:
|
|
19 |
INTRODUCTION_TEXT = f"""
|
20 |
{GENERAL_DESCRIPTION}
|
21 |
|
22 |
-
This is a fork of the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard" target="_blank">π€ Open LLM Leaderboard</a> with different benchmarks.
|
23 |
-
|
24 |
Submit a model for automated evaluation on our GPU cluster on the "Submit" page!
|
25 |
The leaderboard's backend runs on a [fork](https://github.com/eduagarcia/lm-evaluation-harness-pt) of the great [Eleuther AI Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) - read more details in the "About" page!
|
26 |
|
|
|
19 |
INTRODUCTION_TEXT = f"""
|
20 |
{GENERAL_DESCRIPTION}
|
21 |
|
|
|
|
|
22 |
Submit a model for automated evaluation on our GPU cluster on the "Submit" page!
|
23 |
The leaderboard's backend runs on a [fork](https://github.com/eduagarcia/lm-evaluation-harness-pt) of the great [Eleuther AI Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) - read more details in the "About" page!
|
24 |
|
src/display/utils.py
CHANGED
@@ -2,6 +2,9 @@ from dataclasses import dataclass, make_dataclass
|
|
2 |
from enum import Enum
|
3 |
from typing import List
|
4 |
import pandas as pd
|
|
|
|
|
|
|
5 |
from yaml import safe_load
|
6 |
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, TASK_CONFIG
|
7 |
|
@@ -87,12 +90,6 @@ baseline_row = {
|
|
87 |
AutoEvalColumn.precision.name: "?",
|
88 |
AutoEvalColumn.merged.name: False,
|
89 |
#AutoEvalColumn.average.name: 31.0,
|
90 |
-
#AutoEvalColumn.arc.name: 25.0,
|
91 |
-
#AutoEvalColumn.hellaswag.name: 25.0,
|
92 |
-
#AutoEvalColumn.mmlu.name: 25.0,
|
93 |
-
#AutoEvalColumn.truthfulqa.name: 25.0,
|
94 |
-
#AutoEvalColumn.winogrande.name: 50.0,
|
95 |
-
#AutoEvalColumn.gsm8k.name: 0.21,
|
96 |
AutoEvalColumn.dummy.name: "baseline",
|
97 |
AutoEvalColumn.model_type.name: "",
|
98 |
AutoEvalColumn.flagged.name: False,
|
@@ -119,8 +116,8 @@ for task in Tasks:
|
|
119 |
baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
|
120 |
baseline_row[AutoEvalColumn.npm.name] = round(sum(npm) / len(npm), 2)
|
121 |
|
122 |
-
|
123 |
-
baseline_row["π€ Leaderboard Average"] = None
|
124 |
|
125 |
# Average β¬οΈ human baseline is 0.897 (source: averaging human baselines below)
|
126 |
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
|
@@ -136,12 +133,6 @@ human_baseline_row = {
|
|
136 |
AutoEvalColumn.precision.name: "?",
|
137 |
#AutoEvalColumn.average.name: 92.75,
|
138 |
AutoEvalColumn.merged.name: False,
|
139 |
-
#AutoEvalColumn.arc.name: 80.0,
|
140 |
-
#AutoEvalColumn.hellaswag.name: 95.0,
|
141 |
-
#AutoEvalColumn.mmlu.name: 89.8,
|
142 |
-
#AutoEvalColumn.truthfulqa.name: 94.0,
|
143 |
-
#AutoEvalColumn.winogrande.name: 94.0,
|
144 |
-
#AutoEvalColumn.gsm8k.name: 100,
|
145 |
AutoEvalColumn.dummy.name: "human_baseline",
|
146 |
AutoEvalColumn.model_type.name: "",
|
147 |
AutoEvalColumn.flagged.name: False,
|
@@ -168,8 +159,27 @@ for task in Tasks:
|
|
168 |
npm.append((res - task.value.baseline) / (100 - task.value.baseline))
|
169 |
human_baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
|
170 |
human_baseline_row[AutoEvalColumn.npm.name] = round(sum(npm) / len(npm), 2)
|
171 |
-
|
172 |
-
human_baseline_row["π€ Leaderboard Average"] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
@dataclass
|
175 |
class ModelDetails:
|
@@ -183,6 +193,7 @@ class ModelType(Enum):
|
|
183 |
FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="πΆ")
|
184 |
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π¬")
|
185 |
merges = ModelDetails(name="base merges and moerges", symbol="π€")
|
|
|
186 |
Unknown = ModelDetails(name="", symbol="?")
|
187 |
|
188 |
def to_str(self, separator=" "):
|
@@ -200,6 +211,8 @@ class ModelType(Enum):
|
|
200 |
return ModelType.chat
|
201 |
if "merge" in type or "π€" in type:
|
202 |
return ModelType.merges
|
|
|
|
|
203 |
return ModelType.Unknown
|
204 |
|
205 |
class WeightType(Enum):
|
@@ -240,7 +253,7 @@ class Language(Enum):
|
|
240 |
language = language.lower().replace('-', '').replace('_', '')
|
241 |
if language in ["pt", "ptpt", "ptbr", "portuguese"]:
|
242 |
return Language.Portuguese
|
243 |
-
if language in ["en", "enus", "engb", "english"
|
244 |
return Language.English
|
245 |
if language in ["es", "spanish"]:
|
246 |
return Language.Spanish
|
|
|
2 |
from enum import Enum
|
3 |
from typing import List
|
4 |
import pandas as pd
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
from copy import deepcopy
|
8 |
from yaml import safe_load
|
9 |
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, TASK_CONFIG
|
10 |
|
|
|
90 |
AutoEvalColumn.precision.name: "?",
|
91 |
AutoEvalColumn.merged.name: False,
|
92 |
#AutoEvalColumn.average.name: 31.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
AutoEvalColumn.dummy.name: "baseline",
|
94 |
AutoEvalColumn.model_type.name: "",
|
95 |
AutoEvalColumn.flagged.name: False,
|
|
|
116 |
baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
|
117 |
baseline_row[AutoEvalColumn.npm.name] = round(sum(npm) / len(npm), 2)
|
118 |
|
119 |
+
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
|
120 |
+
baseline_row["π€ Leaderboard Average"] = None
|
121 |
|
122 |
# Average β¬οΈ human baseline is 0.897 (source: averaging human baselines below)
|
123 |
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
|
|
|
133 |
AutoEvalColumn.precision.name: "?",
|
134 |
#AutoEvalColumn.average.name: 92.75,
|
135 |
AutoEvalColumn.merged.name: False,
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
AutoEvalColumn.dummy.name: "human_baseline",
|
137 |
AutoEvalColumn.model_type.name: "",
|
138 |
AutoEvalColumn.flagged.name: False,
|
|
|
159 |
npm.append((res - task.value.baseline) / (100 - task.value.baseline))
|
160 |
human_baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
|
161 |
human_baseline_row[AutoEvalColumn.npm.name] = round(sum(npm) / len(npm), 2)
|
162 |
+
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
|
163 |
+
human_baseline_row["π€ Leaderboard Average"] = None
|
164 |
+
|
165 |
+
#Proprietary models
|
166 |
+
proprietary_rows = []
|
167 |
+
if os.path.exists('proprietary_models_results.json'):
|
168 |
+
with open('proprietary_models_results.json', 'r', encoding='utf8') as f:
|
169 |
+
all_models = json.load(f)
|
170 |
+
for model_data in all_models:
|
171 |
+
model_row = deepcopy(baseline_row)
|
172 |
+
model_row[AutoEvalColumn.model.name] = f'<a target="_blank" href="{model_data["link"]}" style="color: var(--text-color); text-decoration: underline;text-decoration-style: dotted;">{model_data["name"]} [{model_data["date"]}]</a>'
|
173 |
+
model_row[AutoEvalColumn.dummy.name] = model_data['model']
|
174 |
+
model_row[AutoEvalColumn.license.name] = "Proprietary"
|
175 |
+
for task in Tasks:
|
176 |
+
model_row[task.value.col_name] = round(model_data['result_metrics'][task.value.benchmark]*100, 2)
|
177 |
+
model_row[AutoEvalColumn.average.name] = round(model_data['result_metrics_average']*100, 2)
|
178 |
+
model_row[AutoEvalColumn.npm.name] = round(model_data['result_metrics_npm']*100, 2)
|
179 |
+
model_row[AutoEvalColumn.model_type.name] = "proprietary models (closed)"
|
180 |
+
model_row[AutoEvalColumn.model_type_symbol.name] = "π"
|
181 |
+
model_row[AutoEvalColumn.main_language.name] = model_data['main_language']
|
182 |
+
proprietary_rows.append(model_row)
|
183 |
|
184 |
@dataclass
|
185 |
class ModelDetails:
|
|
|
193 |
FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="πΆ")
|
194 |
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π¬")
|
195 |
merges = ModelDetails(name="base merges and moerges", symbol="π€")
|
196 |
+
proprietary = ModelDetails(name="proprietary models (closed)", symbol="π")
|
197 |
Unknown = ModelDetails(name="", symbol="?")
|
198 |
|
199 |
def to_str(self, separator=" "):
|
|
|
211 |
return ModelType.chat
|
212 |
if "merge" in type or "π€" in type:
|
213 |
return ModelType.merges
|
214 |
+
if "proprietary" in type or "π" in type:
|
215 |
+
return ModelType.proprietary
|
216 |
return ModelType.Unknown
|
217 |
|
218 |
class WeightType(Enum):
|
|
|
253 |
language = language.lower().replace('-', '').replace('_', '')
|
254 |
if language in ["pt", "ptpt", "ptbr", "portuguese"]:
|
255 |
return Language.Portuguese
|
256 |
+
if language in ["en", "enus", "engb", "english"]:
|
257 |
return Language.English
|
258 |
if language in ["es", "spanish"]:
|
259 |
return Language.Spanish
|
src/populate.py
CHANGED
@@ -5,7 +5,7 @@ import copy
|
|
5 |
import pandas as pd
|
6 |
|
7 |
from src.display.formatting import has_no_nan_values, make_requests_clickable_model
|
8 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row
|
9 |
from src.leaderboard.filter_models import filter_models_flags
|
10 |
from src.leaderboard.read_evals import get_raw_eval_results
|
11 |
|
@@ -14,6 +14,8 @@ def get_leaderboard_df(results_path: str, requests_path: str, dynamic_path: str,
|
|
14 |
raw_data = get_raw_eval_results(results_path=results_path, requests_path=requests_path, dynamic_path=dynamic_path)
|
15 |
all_data_json = [v.to_dict() for v in raw_data]
|
16 |
all_data_json.append(baseline_row)
|
|
|
|
|
17 |
filter_models_flags(all_data_json)
|
18 |
|
19 |
df = pd.DataFrame.from_records(all_data_json)
|
|
|
5 |
import pandas as pd
|
6 |
|
7 |
from src.display.formatting import has_no_nan_values, make_requests_clickable_model
|
8 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row, proprietary_rows
|
9 |
from src.leaderboard.filter_models import filter_models_flags
|
10 |
from src.leaderboard.read_evals import get_raw_eval_results
|
11 |
|
|
|
14 |
raw_data = get_raw_eval_results(results_path=results_path, requests_path=requests_path, dynamic_path=dynamic_path)
|
15 |
all_data_json = [v.to_dict() for v in raw_data]
|
16 |
all_data_json.append(baseline_row)
|
17 |
+
for proprietary_row in proprietary_rows:
|
18 |
+
all_data_json.append(proprietary_row)
|
19 |
filter_models_flags(all_data_json)
|
20 |
|
21 |
df = pd.DataFrame.from_records(all_data_json)
|
src/scripts/update_all_request_files.py
CHANGED
@@ -94,7 +94,7 @@ def update_dynamic_files():
|
|
94 |
start = time.time()
|
95 |
|
96 |
models = list(API.list_models(
|
97 |
-
filter=ModelFilter(task="text-generation"),
|
98 |
full=False,
|
99 |
cardData=True,
|
100 |
fetch_config=True,
|
|
|
94 |
start = time.time()
|
95 |
|
96 |
models = list(API.list_models(
|
97 |
+
# filter=ModelFilter(task="text-generation"),
|
98 |
full=False,
|
99 |
cardData=True,
|
100 |
fetch_config=True,
|
tasks_config/pt_config.yaml
CHANGED
@@ -17,18 +17,14 @@ readme:
|
|
17 |
general_description: |
|
18 |
π The π Open PT LLM Leaderboard aims to provide a benchmark for the evaluation of
|
19 |
Large Language Models (LLMs) in the Portuguese language across a variety of tasks
|
20 |
-
and datasets.
|
21 |
-
The leaderboard is open to submissions of models from the community
|
22 |
-
and is designed to be a resource for researchers, practitioners, and enthusiasts
|
23 |
-
interested in the development and evaluation of LLMs for the Portuguese language.
|
24 |
-
If you have any questions, suggestions, or would like to contribute to the leaderboard,
|
25 |
-
please feel free to reach out at [@eduagarcia](https://linktr.ee/eduagarcia).
|
26 |
support_description: |
|
27 |
This leaderboard is made possible by the support of the
|
28 |
[Center of Excelence in AI (CEIA)](https://ceia.ufg.br/) at the
|
29 |
[Federal University of GoiΓ‘s (UFG)](https://international.ufg.br/).
|
30 |
|
31 |
-
|
|
|
32 |
about_description: |
|
33 |
The π Open PT-LLM Leaderboard is a benchmark for the evaluation of
|
34 |
Large Language Models (LLMs) in the Portuguese language.
|
@@ -41,8 +37,7 @@ readme:
|
|
41 |
[Federal University of GoiΓ‘s (UFG)](https://international.ufg.br/), this leaderboard
|
42 |
operates on a backend of Nvidia A100-80G GPUs. Evaluations are subject to
|
43 |
resource availability, which is not exclusive. Therefore, please be patient if
|
44 |
-
your model is in the queue.
|
45 |
-
reach out.
|
46 |
|
47 |
This is a fork of the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard" target="_blank">π€ Open LLM Leaderboard</a> with
|
48 |
portuguese benchmarks.
|
|
|
17 |
general_description: |
|
18 |
π The π Open PT LLM Leaderboard aims to provide a benchmark for the evaluation of
|
19 |
Large Language Models (LLMs) in the Portuguese language across a variety of tasks
|
20 |
+
and datasets.
|
|
|
|
|
|
|
|
|
|
|
21 |
support_description: |
|
22 |
This leaderboard is made possible by the support of the
|
23 |
[Center of Excelence in AI (CEIA)](https://ceia.ufg.br/) at the
|
24 |
[Federal University of GoiΓ‘s (UFG)](https://international.ufg.br/).
|
25 |
|
26 |
+
If you have any questions, suggestions, or would like to contribute to the leaderboard,
|
27 |
+
please feel free to reach out at [@eduagarcia](https://linktr.ee/eduagarcia).
|
28 |
about_description: |
|
29 |
The π Open PT-LLM Leaderboard is a benchmark for the evaluation of
|
30 |
Large Language Models (LLMs) in the Portuguese language.
|
|
|
37 |
[Federal University of GoiΓ‘s (UFG)](https://international.ufg.br/), this leaderboard
|
38 |
operates on a backend of Nvidia A100-80G GPUs. Evaluations are subject to
|
39 |
resource availability, which is not exclusive. Therefore, please be patient if
|
40 |
+
your model is in the queue.
|
|
|
41 |
|
42 |
This is a fork of the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard" target="_blank">π€ Open LLM Leaderboard</a> with
|
43 |
portuguese benchmarks.
|