Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
eduagarcia
commited on
Commit
·
9c5c692
1
Parent(s):
183ec61
update collection format
Browse files- README.md +26 -0
- model_list.txt +26 -0
- src/display/utils.py +3 -3
- src/tools/collections.py +97 -26
README.md
CHANGED
@@ -79,8 +79,13 @@ models:
|
|
79 |
- JJhooww/Mistral-7B-v0.2-Base_ptbr
|
80 |
- JJhooww/MistralReloadBR_v2_ptbr
|
81 |
- JJhooww/Mistral_Relora_Step2k
|
|
|
|
|
|
|
|
|
82 |
- MagusCorp/legislinho
|
83 |
- MaziyarPanahi/Mistral-7B-Instruct-Aya-101
|
|
|
84 |
- NOVA-vision-language/GlorIA-1.3B
|
85 |
- Nexusflow/Starling-LM-7B-beta
|
86 |
- NousResearch/Nous-Hermes-13b
|
@@ -130,6 +135,7 @@ models:
|
|
130 |
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
131 |
- Unbabel/TowerBase-7B-v0.1
|
132 |
- Walmart-the-bag/Misted-v2-7B
|
|
|
133 |
- Walmart-the-bag/WordWoven-2x7B
|
134 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
|
135 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
|
@@ -143,6 +149,9 @@ models:
|
|
143 |
- Weni/ZeroShot-Multilanguage-Zephyr-7B
|
144 |
- abacusai/Smaug-34B-v0.1
|
145 |
- abacusai/Smaug-72B-v0.1
|
|
|
|
|
|
|
146 |
- allenai/OLMo-1B
|
147 |
- allenai/OLMo-7B
|
148 |
- allenai/OLMo-7B-Twin-2T
|
@@ -160,7 +169,9 @@ models:
|
|
160 |
- bigscience/bloom-3b
|
161 |
- bigscience/bloom-560m
|
162 |
- bigscience/bloom-7b1
|
|
|
163 |
- cnmoro/Mistral-7B-Portuguese
|
|
|
164 |
- croissantllm/CroissantLLMBase
|
165 |
- deepseek-ai/deepseek-llm-7b-base
|
166 |
- deepseek-ai/deepseek-moe-16b-base
|
@@ -171,6 +182,7 @@ models:
|
|
171 |
- dynamofl/dynamo-8B-v0.1
|
172 |
- eduagarcia/gemma-7b-it_no_chat_template
|
173 |
- eduagarcia/gemma-7b-it_singleturn_chat_template
|
|
|
174 |
- facebook/opt-1.3b
|
175 |
- facebook/opt-125m
|
176 |
- facebook/opt-13b
|
@@ -206,8 +218,11 @@ models:
|
|
206 |
- internlm/internlm2-base-20b
|
207 |
- internlm/internlm2-base-7b
|
208 |
- internlm/internlm2-chat-1_8b
|
|
|
209 |
- internlm/internlm2-chat-20b
|
|
|
210 |
- internlm/internlm2-chat-7b
|
|
|
211 |
- josu/gpt-neo-pt-1.3B
|
212 |
- josu/gpt-neo-pt-br
|
213 |
- lmsys/vicuna-13b-v1.5
|
@@ -215,6 +230,7 @@ models:
|
|
215 |
- lrds-code/boana-7b-instruct
|
216 |
- lrds-code/samba-1.1B
|
217 |
- lucianosb/boto-7B
|
|
|
218 |
- maritaca-ai/sabia-7b
|
219 |
- matsuo-lab/weblab-10b
|
220 |
- meta-llama/Llama-2-13b-chat-hf
|
@@ -229,6 +245,7 @@ models:
|
|
229 |
- microsoft/phi-1_5
|
230 |
- microsoft/phi-2
|
231 |
- mistral-community/Mistral-7B-v0.2
|
|
|
232 |
- mistral-community/Mixtral-8x22B-v0.1-4bit
|
233 |
- mistralai/Mistral-7B-Instruct-v0.2
|
234 |
- mistralai/Mistral-7B-v0.1
|
@@ -271,11 +288,19 @@ models:
|
|
271 |
- recogna-nlp/Phi-Bode
|
272 |
- recogna-nlp/bode-13b-alpaca-pt-br
|
273 |
- recogna-nlp/bode-7b-alpaca-pt-br
|
|
|
|
|
274 |
- recogna-nlp/gembode-2b-ultraalpaca
|
|
|
275 |
- recogna-nlp/internlmbode-7b
|
276 |
- recogna-nlp/mistral-bode
|
|
|
277 |
- recogna-nlp/phi-bode-2-ultraalpaca
|
|
|
|
|
|
|
278 |
- rhaymison/Llama-portuguese-13b-Luana-v0.2
|
|
|
279 |
- rhaymison/Mistral-portuguese-luana-7b
|
280 |
- rhaymison/Mistral-portuguese-luana-7b-Mathematics
|
281 |
- rhaymison/Mistral-portuguese-luana-7b-chat
|
@@ -311,6 +336,7 @@ models:
|
|
311 |
- tiiuae/falcon-7b
|
312 |
- togethercomputer/RedPajama-INCITE-7B-Base
|
313 |
- togethercomputer/RedPajama-INCITE-Base-3B-v1
|
|
|
314 |
- upstage/SOLAR-10.7B-Instruct-v1.0
|
315 |
- upstage/SOLAR-10.7B-v1.0
|
316 |
- wandgibaut/periquito-3B
|
|
|
79 |
- JJhooww/Mistral-7B-v0.2-Base_ptbr
|
80 |
- JJhooww/MistralReloadBR_v2_ptbr
|
81 |
- JJhooww/Mistral_Relora_Step2k
|
82 |
+
- JosephusCheung/LL7M
|
83 |
+
- M4-ai/tau-0.5B
|
84 |
+
- M4-ai/tau-0.5B-instruct-DPOP
|
85 |
+
- M4-ai/tau-1.8B
|
86 |
- MagusCorp/legislinho
|
87 |
- MaziyarPanahi/Mistral-7B-Instruct-Aya-101
|
88 |
+
- MulaBR/Mula-4x160-v0.1
|
89 |
- NOVA-vision-language/GlorIA-1.3B
|
90 |
- Nexusflow/Starling-LM-7B-beta
|
91 |
- NousResearch/Nous-Hermes-13b
|
|
|
135 |
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
136 |
- Unbabel/TowerBase-7B-v0.1
|
137 |
- Walmart-the-bag/Misted-v2-7B
|
138 |
+
- Walmart-the-bag/Quintellect-10.7B
|
139 |
- Walmart-the-bag/WordWoven-2x7B
|
140 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
|
141 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
|
|
|
149 |
- Weni/ZeroShot-Multilanguage-Zephyr-7B
|
150 |
- abacusai/Smaug-34B-v0.1
|
151 |
- abacusai/Smaug-72B-v0.1
|
152 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.1
|
153 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2
|
154 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2-fft
|
155 |
- allenai/OLMo-1B
|
156 |
- allenai/OLMo-7B
|
157 |
- allenai/OLMo-7B-Twin-2T
|
|
|
169 |
- bigscience/bloom-3b
|
170 |
- bigscience/bloom-560m
|
171 |
- bigscience/bloom-7b1
|
172 |
+
- botbot-ai/CabraLlama3-8b
|
173 |
- cnmoro/Mistral-7B-Portuguese
|
174 |
+
- cognitivecomputations/dolphin-2.9-llama3-8b
|
175 |
- croissantllm/CroissantLLMBase
|
176 |
- deepseek-ai/deepseek-llm-7b-base
|
177 |
- deepseek-ai/deepseek-moe-16b-base
|
|
|
182 |
- dynamofl/dynamo-8B-v0.1
|
183 |
- eduagarcia/gemma-7b-it_no_chat_template
|
184 |
- eduagarcia/gemma-7b-it_singleturn_chat_template
|
185 |
+
- ericzzz/falcon-rw-1b-instruct-openorca
|
186 |
- facebook/opt-1.3b
|
187 |
- facebook/opt-125m
|
188 |
- facebook/opt-13b
|
|
|
218 |
- internlm/internlm2-base-20b
|
219 |
- internlm/internlm2-base-7b
|
220 |
- internlm/internlm2-chat-1_8b
|
221 |
+
- internlm/internlm2-chat-1_8b-sft
|
222 |
- internlm/internlm2-chat-20b
|
223 |
+
- internlm/internlm2-chat-20b-sft
|
224 |
- internlm/internlm2-chat-7b
|
225 |
+
- internlm/internlm2-chat-7b-sft
|
226 |
- josu/gpt-neo-pt-1.3B
|
227 |
- josu/gpt-neo-pt-br
|
228 |
- lmsys/vicuna-13b-v1.5
|
|
|
230 |
- lrds-code/boana-7b-instruct
|
231 |
- lrds-code/samba-1.1B
|
232 |
- lucianosb/boto-7B
|
233 |
+
- lucianosb/boto-7B-v1.1
|
234 |
- maritaca-ai/sabia-7b
|
235 |
- matsuo-lab/weblab-10b
|
236 |
- meta-llama/Llama-2-13b-chat-hf
|
|
|
245 |
- microsoft/phi-1_5
|
246 |
- microsoft/phi-2
|
247 |
- mistral-community/Mistral-7B-v0.2
|
248 |
+
- mistral-community/Mixtral-8x22B-Instruct-v0.1-4bit
|
249 |
- mistral-community/Mixtral-8x22B-v0.1-4bit
|
250 |
- mistralai/Mistral-7B-Instruct-v0.2
|
251 |
- mistralai/Mistral-7B-v0.1
|
|
|
288 |
- recogna-nlp/Phi-Bode
|
289 |
- recogna-nlp/bode-13b-alpaca-pt-br
|
290 |
- recogna-nlp/bode-7b-alpaca-pt-br
|
291 |
+
- recogna-nlp/gembode-2b-base-ultraalpaca
|
292 |
+
- recogna-nlp/gembode-2b-base-ultraalpaca-qlora
|
293 |
- recogna-nlp/gembode-2b-ultraalpaca
|
294 |
+
- recogna-nlp/gembode-2b-ultraalpaca-qlora
|
295 |
- recogna-nlp/internlmbode-7b
|
296 |
- recogna-nlp/mistral-bode
|
297 |
+
- recogna-nlp/mistralbode_7b_qlora_ultraalpaca
|
298 |
- recogna-nlp/phi-bode-2-ultraalpaca
|
299 |
+
- recogna-nlp/qwenbode_1_8b_chat_ultraalpaca
|
300 |
+
- recogna-nlp/qwenbode_1_8b_chat_ultraalpaca_qlora
|
301 |
+
- recogna-nlp/zephyr_7b_beta_ultraalpaca
|
302 |
- rhaymison/Llama-portuguese-13b-Luana-v0.2
|
303 |
+
- rhaymison/Mistral-8x7b-portuguese-luana
|
304 |
- rhaymison/Mistral-portuguese-luana-7b
|
305 |
- rhaymison/Mistral-portuguese-luana-7b-Mathematics
|
306 |
- rhaymison/Mistral-portuguese-luana-7b-chat
|
|
|
336 |
- tiiuae/falcon-7b
|
337 |
- togethercomputer/RedPajama-INCITE-7B-Base
|
338 |
- togethercomputer/RedPajama-INCITE-Base-3B-v1
|
339 |
+
- unsloth/mistral-7b-bnb-4bit
|
340 |
- upstage/SOLAR-10.7B-Instruct-v1.0
|
341 |
- upstage/SOLAR-10.7B-v1.0
|
342 |
- wandgibaut/periquito-3B
|
model_list.txt
CHANGED
@@ -50,8 +50,13 @@
|
|
50 |
- JJhooww/Mistral-7B-v0.2-Base_ptbr
|
51 |
- JJhooww/MistralReloadBR_v2_ptbr
|
52 |
- JJhooww/Mistral_Relora_Step2k
|
|
|
|
|
|
|
|
|
53 |
- MagusCorp/legislinho
|
54 |
- MaziyarPanahi/Mistral-7B-Instruct-Aya-101
|
|
|
55 |
- NOVA-vision-language/GlorIA-1.3B
|
56 |
- Nexusflow/Starling-LM-7B-beta
|
57 |
- NousResearch/Nous-Hermes-13b
|
@@ -101,6 +106,7 @@
|
|
101 |
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
102 |
- Unbabel/TowerBase-7B-v0.1
|
103 |
- Walmart-the-bag/Misted-v2-7B
|
|
|
104 |
- Walmart-the-bag/WordWoven-2x7B
|
105 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
|
106 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
|
@@ -114,6 +120,9 @@
|
|
114 |
- Weni/ZeroShot-Multilanguage-Zephyr-7B
|
115 |
- abacusai/Smaug-34B-v0.1
|
116 |
- abacusai/Smaug-72B-v0.1
|
|
|
|
|
|
|
117 |
- allenai/OLMo-1B
|
118 |
- allenai/OLMo-7B
|
119 |
- allenai/OLMo-7B-Twin-2T
|
@@ -131,7 +140,9 @@
|
|
131 |
- bigscience/bloom-3b
|
132 |
- bigscience/bloom-560m
|
133 |
- bigscience/bloom-7b1
|
|
|
134 |
- cnmoro/Mistral-7B-Portuguese
|
|
|
135 |
- croissantllm/CroissantLLMBase
|
136 |
- deepseek-ai/deepseek-llm-7b-base
|
137 |
- deepseek-ai/deepseek-moe-16b-base
|
@@ -142,6 +153,7 @@
|
|
142 |
- dynamofl/dynamo-8B-v0.1
|
143 |
- eduagarcia/gemma-7b-it_no_chat_template
|
144 |
- eduagarcia/gemma-7b-it_singleturn_chat_template
|
|
|
145 |
- facebook/opt-1.3b
|
146 |
- facebook/opt-125m
|
147 |
- facebook/opt-13b
|
@@ -177,8 +189,11 @@
|
|
177 |
- internlm/internlm2-base-20b
|
178 |
- internlm/internlm2-base-7b
|
179 |
- internlm/internlm2-chat-1_8b
|
|
|
180 |
- internlm/internlm2-chat-20b
|
|
|
181 |
- internlm/internlm2-chat-7b
|
|
|
182 |
- josu/gpt-neo-pt-1.3B
|
183 |
- josu/gpt-neo-pt-br
|
184 |
- lmsys/vicuna-13b-v1.5
|
@@ -186,6 +201,7 @@
|
|
186 |
- lrds-code/boana-7b-instruct
|
187 |
- lrds-code/samba-1.1B
|
188 |
- lucianosb/boto-7B
|
|
|
189 |
- maritaca-ai/sabia-7b
|
190 |
- matsuo-lab/weblab-10b
|
191 |
- meta-llama/Llama-2-13b-chat-hf
|
@@ -200,6 +216,7 @@
|
|
200 |
- microsoft/phi-1_5
|
201 |
- microsoft/phi-2
|
202 |
- mistral-community/Mistral-7B-v0.2
|
|
|
203 |
- mistral-community/Mixtral-8x22B-v0.1-4bit
|
204 |
- mistralai/Mistral-7B-Instruct-v0.2
|
205 |
- mistralai/Mistral-7B-v0.1
|
@@ -242,11 +259,19 @@
|
|
242 |
- recogna-nlp/Phi-Bode
|
243 |
- recogna-nlp/bode-13b-alpaca-pt-br
|
244 |
- recogna-nlp/bode-7b-alpaca-pt-br
|
|
|
|
|
245 |
- recogna-nlp/gembode-2b-ultraalpaca
|
|
|
246 |
- recogna-nlp/internlmbode-7b
|
247 |
- recogna-nlp/mistral-bode
|
|
|
248 |
- recogna-nlp/phi-bode-2-ultraalpaca
|
|
|
|
|
|
|
249 |
- rhaymison/Llama-portuguese-13b-Luana-v0.2
|
|
|
250 |
- rhaymison/Mistral-portuguese-luana-7b
|
251 |
- rhaymison/Mistral-portuguese-luana-7b-Mathematics
|
252 |
- rhaymison/Mistral-portuguese-luana-7b-chat
|
@@ -282,6 +307,7 @@
|
|
282 |
- tiiuae/falcon-7b
|
283 |
- togethercomputer/RedPajama-INCITE-7B-Base
|
284 |
- togethercomputer/RedPajama-INCITE-Base-3B-v1
|
|
|
285 |
- upstage/SOLAR-10.7B-Instruct-v1.0
|
286 |
- upstage/SOLAR-10.7B-v1.0
|
287 |
- wandgibaut/periquito-3B
|
|
|
50 |
- JJhooww/Mistral-7B-v0.2-Base_ptbr
|
51 |
- JJhooww/MistralReloadBR_v2_ptbr
|
52 |
- JJhooww/Mistral_Relora_Step2k
|
53 |
+
- JosephusCheung/LL7M
|
54 |
+
- M4-ai/tau-0.5B
|
55 |
+
- M4-ai/tau-0.5B-instruct-DPOP
|
56 |
+
- M4-ai/tau-1.8B
|
57 |
- MagusCorp/legislinho
|
58 |
- MaziyarPanahi/Mistral-7B-Instruct-Aya-101
|
59 |
+
- MulaBR/Mula-4x160-v0.1
|
60 |
- NOVA-vision-language/GlorIA-1.3B
|
61 |
- Nexusflow/Starling-LM-7B-beta
|
62 |
- NousResearch/Nous-Hermes-13b
|
|
|
106 |
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
107 |
- Unbabel/TowerBase-7B-v0.1
|
108 |
- Walmart-the-bag/Misted-v2-7B
|
109 |
+
- Walmart-the-bag/Quintellect-10.7B
|
110 |
- Walmart-the-bag/WordWoven-2x7B
|
111 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
|
112 |
- Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
|
|
|
120 |
- Weni/ZeroShot-Multilanguage-Zephyr-7B
|
121 |
- abacusai/Smaug-34B-v0.1
|
122 |
- abacusai/Smaug-72B-v0.1
|
123 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.1
|
124 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2
|
125 |
+
- adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2-fft
|
126 |
- allenai/OLMo-1B
|
127 |
- allenai/OLMo-7B
|
128 |
- allenai/OLMo-7B-Twin-2T
|
|
|
140 |
- bigscience/bloom-3b
|
141 |
- bigscience/bloom-560m
|
142 |
- bigscience/bloom-7b1
|
143 |
+
- botbot-ai/CabraLlama3-8b
|
144 |
- cnmoro/Mistral-7B-Portuguese
|
145 |
+
- cognitivecomputations/dolphin-2.9-llama3-8b
|
146 |
- croissantllm/CroissantLLMBase
|
147 |
- deepseek-ai/deepseek-llm-7b-base
|
148 |
- deepseek-ai/deepseek-moe-16b-base
|
|
|
153 |
- dynamofl/dynamo-8B-v0.1
|
154 |
- eduagarcia/gemma-7b-it_no_chat_template
|
155 |
- eduagarcia/gemma-7b-it_singleturn_chat_template
|
156 |
+
- ericzzz/falcon-rw-1b-instruct-openorca
|
157 |
- facebook/opt-1.3b
|
158 |
- facebook/opt-125m
|
159 |
- facebook/opt-13b
|
|
|
189 |
- internlm/internlm2-base-20b
|
190 |
- internlm/internlm2-base-7b
|
191 |
- internlm/internlm2-chat-1_8b
|
192 |
+
- internlm/internlm2-chat-1_8b-sft
|
193 |
- internlm/internlm2-chat-20b
|
194 |
+
- internlm/internlm2-chat-20b-sft
|
195 |
- internlm/internlm2-chat-7b
|
196 |
+
- internlm/internlm2-chat-7b-sft
|
197 |
- josu/gpt-neo-pt-1.3B
|
198 |
- josu/gpt-neo-pt-br
|
199 |
- lmsys/vicuna-13b-v1.5
|
|
|
201 |
- lrds-code/boana-7b-instruct
|
202 |
- lrds-code/samba-1.1B
|
203 |
- lucianosb/boto-7B
|
204 |
+
- lucianosb/boto-7B-v1.1
|
205 |
- maritaca-ai/sabia-7b
|
206 |
- matsuo-lab/weblab-10b
|
207 |
- meta-llama/Llama-2-13b-chat-hf
|
|
|
216 |
- microsoft/phi-1_5
|
217 |
- microsoft/phi-2
|
218 |
- mistral-community/Mistral-7B-v0.2
|
219 |
+
- mistral-community/Mixtral-8x22B-Instruct-v0.1-4bit
|
220 |
- mistral-community/Mixtral-8x22B-v0.1-4bit
|
221 |
- mistralai/Mistral-7B-Instruct-v0.2
|
222 |
- mistralai/Mistral-7B-v0.1
|
|
|
259 |
- recogna-nlp/Phi-Bode
|
260 |
- recogna-nlp/bode-13b-alpaca-pt-br
|
261 |
- recogna-nlp/bode-7b-alpaca-pt-br
|
262 |
+
- recogna-nlp/gembode-2b-base-ultraalpaca
|
263 |
+
- recogna-nlp/gembode-2b-base-ultraalpaca-qlora
|
264 |
- recogna-nlp/gembode-2b-ultraalpaca
|
265 |
+
- recogna-nlp/gembode-2b-ultraalpaca-qlora
|
266 |
- recogna-nlp/internlmbode-7b
|
267 |
- recogna-nlp/mistral-bode
|
268 |
+
- recogna-nlp/mistralbode_7b_qlora_ultraalpaca
|
269 |
- recogna-nlp/phi-bode-2-ultraalpaca
|
270 |
+
- recogna-nlp/qwenbode_1_8b_chat_ultraalpaca
|
271 |
+
- recogna-nlp/qwenbode_1_8b_chat_ultraalpaca_qlora
|
272 |
+
- recogna-nlp/zephyr_7b_beta_ultraalpaca
|
273 |
- rhaymison/Llama-portuguese-13b-Luana-v0.2
|
274 |
+
- rhaymison/Mistral-8x7b-portuguese-luana
|
275 |
- rhaymison/Mistral-portuguese-luana-7b
|
276 |
- rhaymison/Mistral-portuguese-luana-7b-Mathematics
|
277 |
- rhaymison/Mistral-portuguese-luana-7b-chat
|
|
|
307 |
- tiiuae/falcon-7b
|
308 |
- togethercomputer/RedPajama-INCITE-7B-Base
|
309 |
- togethercomputer/RedPajama-INCITE-Base-3B-v1
|
310 |
+
- unsloth/mistral-7b-bnb-4bit
|
311 |
- upstage/SOLAR-10.7B-Instruct-v1.0
|
312 |
- upstage/SOLAR-10.7B-v1.0
|
313 |
- wandgibaut/periquito-3B
|
src/display/utils.py
CHANGED
@@ -193,11 +193,11 @@ class ModelDetails:
|
|
193 |
|
194 |
class ModelType(Enum):
|
195 |
PT = ModelDetails(name="pretrained", symbol="🟢")
|
196 |
-
LA = ModelDetails(name="language adapted
|
197 |
FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="🔶")
|
198 |
-
chat = ModelDetails(name="chat
|
199 |
merges = ModelDetails(name="base merges and moerges", symbol="🤝")
|
200 |
-
proprietary = ModelDetails(name="proprietary
|
201 |
Unknown = ModelDetails(name="", symbol="?")
|
202 |
|
203 |
def to_str(self, separator=" "):
|
|
|
193 |
|
194 |
class ModelType(Enum):
|
195 |
PT = ModelDetails(name="pretrained", symbol="🟢")
|
196 |
+
LA = ModelDetails(name="language adapted (FP, FT, ...)", symbol="🆎")
|
197 |
FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="🔶")
|
198 |
+
chat = ModelDetails(name="chat (RLHF, DPO, IFT, ...)", symbol="💬")
|
199 |
merges = ModelDetails(name="base merges and moerges", symbol="🤝")
|
200 |
+
proprietary = ModelDetails(name="proprietary (closed)", symbol="🔒")
|
201 |
Unknown = ModelDetails(name="", symbol="?")
|
202 |
|
203 |
def to_str(self, separator=" "):
|
src/tools/collections.py
CHANGED
@@ -4,6 +4,7 @@ import pandas as pd
|
|
4 |
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
|
5 |
from huggingface_hub.utils._errors import HfHubHTTPError
|
6 |
from pandas import DataFrame
|
|
|
7 |
|
8 |
from src.display.utils import AutoEvalColumn, ModelType, NUMERIC_INTERVALS
|
9 |
from src.envs import H4_TOKEN, PATH_TO_COLLECTION
|
@@ -29,50 +30,120 @@ def update_collections(df: DataFrame):
|
|
29 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
30 |
|
31 |
cur_best_models = []
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
continue
|
37 |
-
for size in intervals:
|
38 |
-
# We filter the df to gather the relevant models
|
39 |
-
type_emoji = [t[0] for t in type.value.symbol]
|
40 |
-
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
print(type.value.symbol, size, best_models[:10])
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# We add them one by one to the leaderboard
|
52 |
-
for
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
try:
|
56 |
collection = add_collection_item(
|
57 |
PATH_TO_COLLECTION,
|
58 |
item_id=model,
|
59 |
item_type="model",
|
60 |
exists_ok=True,
|
61 |
-
note=
|
62 |
token=H4_TOKEN,
|
63 |
)
|
64 |
-
|
65 |
-
|
66 |
-
): # we added an item - we make sure its position is correct
|
67 |
-
item_object_id = collection.items[-1].item_object_id
|
68 |
-
update_collection_item(
|
69 |
-
collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix
|
70 |
-
)
|
71 |
-
cur_len_collection = len(collection.items)
|
72 |
cur_best_models.append(model)
|
|
|
|
|
|
|
|
|
73 |
break
|
74 |
except HfHubHTTPError:
|
75 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
|
78 |
for item in collection.items:
|
|
|
4 |
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
|
5 |
from huggingface_hub.utils._errors import HfHubHTTPError
|
6 |
from pandas import DataFrame
|
7 |
+
import numpy as np
|
8 |
|
9 |
from src.display.utils import AutoEvalColumn, ModelType, NUMERIC_INTERVALS
|
10 |
from src.envs import H4_TOKEN, PATH_TO_COLLECTION
|
|
|
30 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
31 |
|
32 |
cur_best_models = []
|
33 |
+
cur_best_scores = []
|
34 |
+
scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0}
|
35 |
|
36 |
+
types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])]
|
37 |
+
|
38 |
+
for item in collection.items:
|
39 |
+
try:
|
40 |
+
delete_collection_item(
|
41 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
|
42 |
+
)
|
43 |
+
except HfHubHTTPError:
|
44 |
continue
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
ix = 0
|
47 |
+
for size in intervals:
|
48 |
+
interval_scores = []
|
49 |
+
interval_itens_languages = []
|
50 |
+
interval_itens = []
|
51 |
|
52 |
+
numeric_interval = pd.IntervalIndex([intervals[size]])
|
53 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
54 |
+
size_df = df.loc[mask]
|
|
|
55 |
|
56 |
+
for model_type, types in types_to_consider:
|
57 |
+
type_emojis = []
|
58 |
+
for type in types:
|
59 |
+
if type.value.name == "":
|
60 |
+
continue
|
61 |
+
type_emoji = [t[0] for t in type.value.symbol]
|
62 |
+
type_emojis.extend(type_emoji)
|
63 |
+
filtered_df = size_df[size_df[AutoEvalColumn.model_type_symbol.name].isin(type_emojis)]
|
64 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.average.name].astype(float) > scores_per_type[model_type]]
|
65 |
+
|
66 |
+
best_models = filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)
|
67 |
+
print(type_emojis, size, list(best_models[AutoEvalColumn.dummy.name])[:10])
|
68 |
# We add them one by one to the leaderboard
|
69 |
+
for i, row in best_models.iterrows():
|
70 |
+
model = row[AutoEvalColumn.dummy.name]
|
71 |
+
score = row[AutoEvalColumn.average.name]
|
72 |
+
language = row[AutoEvalColumn.main_language.name]
|
73 |
+
if language == 'Portuguese':
|
74 |
+
note = f"Best Portuguese {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
|
75 |
+
else:
|
76 |
+
note = f"Best {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
|
77 |
try:
|
78 |
collection = add_collection_item(
|
79 |
PATH_TO_COLLECTION,
|
80 |
item_id=model,
|
81 |
item_type="model",
|
82 |
exists_ok=True,
|
83 |
+
note=note,
|
84 |
token=H4_TOKEN,
|
85 |
)
|
86 |
+
ix += 1
|
87 |
+
item_object_id = collection.items[-1].item_object_id
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
cur_best_models.append(model)
|
89 |
+
interval_scores.append(float(score))
|
90 |
+
interval_itens_languages.append(language)
|
91 |
+
interval_itens.append(item_object_id)
|
92 |
+
scores_per_type[model_type] = float(score)
|
93 |
break
|
94 |
except HfHubHTTPError:
|
95 |
continue
|
96 |
+
if 'Portuguese' not in interval_itens_languages:
|
97 |
+
language = ['Portuguese']
|
98 |
+
model_type = 'language'
|
99 |
+
filtered_df = size_df[size_df[AutoEvalColumn.main_language.name].isin(language)]
|
100 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.average.name].astype(float) > scores_per_type[model_type]]
|
101 |
+
|
102 |
+
best_models = filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)
|
103 |
+
print(language, size, list(best_models[AutoEvalColumn.dummy.name])[:10])
|
104 |
+
# We add them one by one to the leaderboard
|
105 |
+
for i, row in best_models.iterrows():
|
106 |
+
model = row[AutoEvalColumn.dummy.name]
|
107 |
+
score = row[AutoEvalColumn.average.name]
|
108 |
+
language = row[AutoEvalColumn.main_language.name]
|
109 |
+
|
110 |
+
if language == 'Portuguese':
|
111 |
+
note = f"Best Portuguese {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
|
112 |
+
else:
|
113 |
+
note = f"Best {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
|
114 |
+
try:
|
115 |
+
collection = add_collection_item(
|
116 |
+
PATH_TO_COLLECTION,
|
117 |
+
item_id=model,
|
118 |
+
item_type="model",
|
119 |
+
exists_ok=True,
|
120 |
+
note=note,
|
121 |
+
token=H4_TOKEN,
|
122 |
+
)
|
123 |
+
ix += 1
|
124 |
+
item_object_id = collection.items[-1].item_object_id
|
125 |
+
cur_best_models.append(model)
|
126 |
+
interval_scores.append(float(score))
|
127 |
+
interval_itens_languages.append(language)
|
128 |
+
interval_itens.append(item_object_id)
|
129 |
+
scores_per_type[model_type] = float(score)
|
130 |
+
break
|
131 |
+
except HfHubHTTPError:
|
132 |
+
continue
|
133 |
+
# fix order:
|
134 |
+
starting_idx = len(cur_best_models)
|
135 |
+
k = 0
|
136 |
+
for i in np.argsort(interval_scores):
|
137 |
+
if i == k:
|
138 |
+
continue
|
139 |
+
else:
|
140 |
+
try:
|
141 |
+
update_collection_item(
|
142 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=interval_itens[i], position=starting_idx+k
|
143 |
+
)
|
144 |
+
except:
|
145 |
+
pass
|
146 |
+
k += 1
|
147 |
|
148 |
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
|
149 |
for item in collection.items:
|