eduagarcia commited on
Commit
e21873c
1 Parent(s): 43c2b1a

Unselect task datasets will update average and npm

Browse files
Files changed (1) hide show
  1. app.py +18 -1
app.py CHANGED
@@ -28,7 +28,8 @@ from src.display.utils import (
28
  ModelType,
29
  fields,
30
  WeightType,
31
- Precision
 
32
  )
33
  from src.envs import (
34
  API,
@@ -126,6 +127,7 @@ def update_table(
126
  ):
127
  filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
128
  filtered_df = filter_queries(query, filtered_df)
 
129
  df = select_columns(filtered_df, columns)
130
  return df
131
 
@@ -200,6 +202,21 @@ def filter_models(
200
 
201
  return filtered_df
202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
  leaderboard_df = filter_models(
204
  df=leaderboard_df,
205
  type_query=[t.to_str(" : ") for t in ModelType],
 
28
  ModelType,
29
  fields,
30
  WeightType,
31
+ Precision,
32
+ Tasks
33
  )
34
  from src.envs import (
35
  API,
 
127
  ):
128
  filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
129
  filtered_df = filter_queries(query, filtered_df)
130
+ filtered_df = update_leaderboard_avg_scores(filtered_df, columns)
131
  df = select_columns(filtered_df, columns)
132
  return df
133
 
 
202
 
203
  return filtered_df
204
 
205
+ def update_leaderboard_avg_scores(df, columns):
206
+ new_df = df.copy()
207
+
208
+ #update average with tasks in shown columns
209
+ task_columns = []
210
+ task_baseline = []
211
+ for task in Tasks:
212
+ column_name = getattr(AutoEvalColumn, task.name).name
213
+ if column_name in columns:
214
+ task_columns.append(column_name)
215
+ task_baseline.append(task.value.baseline)
216
+ new_df[AutoEvalColumn.average.name] = new_df[task_columns].mean(axis=1).apply(lambda x: round(x, 2))
217
+ new_df[AutoEvalColumn.npm.name] = (((new_df[task_columns] - task_baseline) / [100.0 - t for t in task_baseline]).mean(axis=1) * 100).apply(lambda x: round(x, 2))
218
+ return new_df
219
+
220
  leaderboard_df = filter_models(
221
  df=leaderboard_df,
222
  type_query=[t.to_str(" : ") for t in ModelType],