import os from yaml import safe_load from huggingface_hub import HfApi TASK_CONFIG_NAME = os.getenv("TASK_CONFIG", "pt_config") TASK_CONFIG_PATH = os.path.join('tasks_config', TASK_CONFIG_NAME + ".yaml") with open(TASK_CONFIG_PATH, 'r', encoding='utf-8') as f: TASK_CONFIG = safe_load(f) def get_config(name, default): res = None if name in os.environ: res = os.environ[name] elif 'config' in TASK_CONFIG: res = TASK_CONFIG['config'].get(name, None) if res is None: return default return res def str2bool(v): return str(v).lower() in ("yes", "true", "t", "1") # clone / pull the lmeh eval data H4_TOKEN = get_config("H4_TOKEN", None) LEADERBOARD_NAME = get_config("LEADERBOARD_NAME", "Open LLM Leaderboard") REPO_ID = get_config("REPO_ID", "HuggingFaceH4/open_llm_leaderboard") QUEUE_REPO = get_config("QUEUE_REPO", "open-llm-leaderboard/requests") DYNAMIC_INFO_REPO = get_config("DYNAMIC_INFO_REPO", "open-llm-leaderboard/dynamic_model_information") RESULTS_REPO = get_config("RESULTS_REPO", "open-llm-leaderboard/results") RAW_RESULTS_REPO = get_config("RAW_RESULTS_REPO", None) PRIVATE_QUEUE_REPO = QUEUE_REPO PRIVATE_RESULTS_REPO = RESULTS_REPO #PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests" #PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results" IS_PUBLIC = str2bool(get_config("IS_PUBLIC", True)) CACHE_PATH=get_config("HF_HOME", ".") EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") DYNAMIC_INFO_PATH = os.path.join(CACHE_PATH, "dynamic-info") DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json") EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private" EVAL_RESULTS_PATH_PRIVATE = "eval-results-private" PATH_TO_COLLECTION = get_config("PATH_TO_COLLECTION", "open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03") # Rate limit variables RATE_LIMIT_PERIOD = int(get_config("RATE_LIMIT_PERIOD", 7)) RATE_LIMIT_QUOTA = int(get_config("RATE_LIMIT_QUOTA", 5)) HAS_HIGHER_RATE_LIMIT = get_config("HAS_HIGHER_RATE_LIMIT", "TheBloke").split(',') TRUST_REMOTE_CODE = str2bool(get_config("TRUST_REMOTE_CODE", False)) #Set if you want to get an extra field with the average eval results from the HF leaderboard GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS = str2bool(get_config("GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS", False)) ORIGINAL_HF_LEADERBOARD_RESULTS_REPO = get_config("ORIGINAL_HF_LEADERBOARD_RESULTS_REPO", "open-llm-leaderboard/results") ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, 'original_results') SHOW_INCOMPLETE_EVALS = str2bool(get_config("SHOW_INCOMPLETE_EVALS", False)) REQUIRE_MODEL_CARD = str2bool(get_config("REQUIRE_MODEL_CARD", True)) REQUIRE_MODEL_LICENSE = str2bool(get_config("REQUIRE_MODEL_LICENSE", True)) API = HfApi(token=H4_TOKEN)