import os from huggingface_hub import HfApi # clone / pull the lmeh eval data H4_TOKEN = os.environ.get("H4_TOKEN", None) LEADERBOARD_NAME = os.getenv("LEADERBOARD_NAME", "Open LLM Leaderboard") REPO_ID = os.getenv("REPO_ID", "HuggingFaceH4/open_llm_leaderboard") QUEUE_REPO = os.getenv("QUEUE_REPO", "open-llm-leaderboard/requests") DYNAMIC_INFO_REPO = os.getenv("DYNAMIC_INFO_REPO", "open-llm-leaderboard/dynamic_model_information") RESULTS_REPO = os.getenv("RESULTS_REPO", "open-llm-leaderboard/results") PRIVATE_QUEUE_REPO = QUEUE_REPO PRIVATE_RESULTS_REPO = RESULTS_REPO #PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests" #PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results" IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) CACHE_PATH=os.getenv("HF_HOME", ".") EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") DYNAMIC_INFO_PATH = os.path.join(CACHE_PATH, "dynamic-info") DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json") EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private" EVAL_RESULTS_PATH_PRIVATE = "eval-results-private" PATH_TO_COLLECTION = os.getenv("PATH_TO_COLLECTION", "open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03") # Rate limit variables RATE_LIMIT_PERIOD = int(os.getenv("RATE_LIMIT_PERIOD", 7)) RATE_LIMIT_QUOTA = int(os.getenv("RATE_LIMIT_QUOTA", 5)) HAS_HIGHER_RATE_LIMIT = os.environ.get("HAS_HIGHER_RATE_LIMIT", "TheBloke").split(',') TRUST_REMOTE_CODE = bool(os.getenv("TRUST_REMOTE_CODE", False)) API = HfApi(token=H4_TOKEN)