eduardmtz commited on
Commit
2362cf7
·
verified ·
1 Parent(s): 9ed353b

Update preguntar-pdf.html

Browse files
Files changed (1) hide show
  1. preguntar-pdf.html +21 -9
preguntar-pdf.html CHANGED
@@ -8,9 +8,6 @@
8
  </head>
9
  <body>
10
  <h1>Ask Questions to the Model</h1>
11
- <a href="entrenament-pdf.html" style="margin:5px;padding: 5px; border:1px solid green">Entrenament PDF</a>
12
- <a href="preguntar-pdf.html" style="margin:5px;padding: 5px; border:1px solid green">Preguntar PDF</a>
13
- <br><br>
14
  <input type="text" id="question" placeholder="Type your question here">
15
  <button id="askQuestion">Ask</button>
16
 
@@ -19,16 +16,20 @@
19
  <script>
20
  async function loadModel() {
21
  try {
 
22
  const model = await tf.loadLayersModel('localstorage://pdf-trained-model');
 
23
  return model;
24
  } catch (err) {
25
  document.getElementById('response').textContent = 'Model not found. Train it first!';
 
26
  throw err;
27
  }
28
  }
29
 
30
  function tokenizeQuestion(question, tokenizer) {
31
  const tokens = question.split(/\s+/);
 
32
  return tokens.map(token => tokenizer[token] || 0);
33
  }
34
 
@@ -56,18 +57,29 @@
56
  return;
57
  }
58
 
59
- const paddedInput = tf.pad(tf.tensor2d([input], [1, input.length]), [[0, 0], [0, Math.max(0, 10 - input.length)]], 'constant');
 
 
 
 
60
 
61
- const prediction = model.predict(paddedInput);
62
- const predictionArray = await prediction.array();
63
 
64
- responseElement.textContent = `Model response: ${predictionArray}`;
 
 
 
 
 
 
 
 
65
  } catch (err) {
66
  responseElement.textContent = 'Error: Could not load model or process question.';
67
- console.error(err);
68
  }
69
  });
70
- console.log('Model keys in local storage:', Object.keys(localStorage));
71
  </script>
72
  </body>
73
  </html>
 
 
8
  </head>
9
  <body>
10
  <h1>Ask Questions to the Model</h1>
 
 
 
11
  <input type="text" id="question" placeholder="Type your question here">
12
  <button id="askQuestion">Ask</button>
13
 
 
16
  <script>
17
  async function loadModel() {
18
  try {
19
+ console.log('Checking available models in local storage:', Object.keys(localStorage));
20
  const model = await tf.loadLayersModel('localstorage://pdf-trained-model');
21
+ console.log('Model loaded successfully.');
22
  return model;
23
  } catch (err) {
24
  document.getElementById('response').textContent = 'Model not found. Train it first!';
25
+ console.error('Error loading model:', err);
26
  throw err;
27
  }
28
  }
29
 
30
  function tokenizeQuestion(question, tokenizer) {
31
  const tokens = question.split(/\s+/);
32
+ console.log('Tokens from question:', tokens);
33
  return tokens.map(token => tokenizer[token] || 0);
34
  }
35
 
 
57
  return;
58
  }
59
 
60
+ const paddedInput = tf.pad(
61
+ tf.tensor2d([input], [1, input.length]),
62
+ [[0, 0], [0, Math.max(0, 10 - input.length)]],
63
+ 'constant'
64
+ );
65
 
66
+ console.log('Padded input for prediction:', paddedInput.arraySync());
 
67
 
68
+ try {
69
+ const prediction = model.predict(paddedInput);
70
+ const predictionArray = await prediction.array();
71
+ console.log('Prediction result:', predictionArray);
72
+ responseElement.textContent = `Model response: ${JSON.stringify(predictionArray)}`;
73
+ } catch (err) {
74
+ console.error('Prediction error:', err);
75
+ responseElement.textContent = 'Error during prediction.';
76
+ }
77
  } catch (err) {
78
  responseElement.textContent = 'Error: Could not load model or process question.';
79
+ console.error('Error in processing question:', err);
80
  }
81
  });
 
82
  </script>
83
  </body>
84
  </html>
85
+