Spaces:
Runtime error
Runtime error
import logging | |
from functools import partial | |
import streamlit as st | |
from embedding_lenses.data import uploaded_file_to_dataframe | |
from embedding_lenses.dimensionality_reduction import ( | |
get_tsne_embeddings, | |
get_umap_embeddings, | |
) | |
from embedding_lenses.embedding import load_model | |
from perplexity_lenses import REGISTRY_DATASET | |
from perplexity_lenses.data import ( | |
documents_df_to_sentences_df, | |
hub_dataset_to_dataframe, | |
) | |
from perplexity_lenses.engine import ( | |
DIMENSIONALITY_REDUCTION_ALGORITHMS, | |
DOCUMENT_TYPES, | |
EMBEDDING_MODELS, | |
LANGUAGES, | |
PERPLEXITY_MODELS, | |
SEED, | |
generate_plot, | |
) | |
from perplexity_lenses.perplexity import KenlmModel | |
from perplexity_lenses.visualization import draw_histogram | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
st.title("Perplexity Lenses") | |
st.write("Visualize text embeddings in 2D using colors to represent perplexity values.") | |
uploaded_file = st.file_uploader("Choose an csv/tsv file...", type=["csv", "tsv"]) | |
st.write( | |
"Alternatively, select a dataset from the [hub](https://huggingface.co/datasets)" | |
) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
hub_dataset = st.text_input("Dataset name", "mc4") | |
with col2: | |
hub_dataset_config = st.text_input("Dataset configuration", "es") | |
with col3: | |
hub_dataset_split = st.text_input("Dataset split", "train") | |
col4, col5 = st.columns(2) | |
with col4: | |
text_column = st.text_input("Text field name", "text") | |
with col5: | |
language = st.selectbox("Language", LANGUAGES, 12) | |
col6, col7 = st.columns(2) | |
with col6: | |
doc_type = st.selectbox("Document type", DOCUMENT_TYPES, 1) | |
with col7: | |
sample = st.number_input("Maximum number of documents to use", 1, 100000, 1000) | |
perplexity_model = st.selectbox( | |
"Dataset on which the perplexity model was trained on", PERPLEXITY_MODELS, 0 | |
).lower() | |
dimensionality_reduction = st.selectbox( | |
"Dimensionality Reduction algorithm", DIMENSIONALITY_REDUCTION_ALGORITHMS, 0 | |
) | |
model_name = st.selectbox("Sentence embedding model", EMBEDDING_MODELS, 0) | |
advanced_options = st.checkbox( | |
"Advanced options (do not modify if using default KenLM models).", value=False | |
) | |
lower_case = True | |
remove_accents = True | |
normalize_numbers = True | |
punctuation = 1 | |
if advanced_options: | |
lower_case = st.checkbox( | |
"Lower case text for KenLM preprocessing (from cc_net)", value=False | |
) | |
remove_accents = st.checkbox( | |
"Remove accents for KenLM preprocessing (from cc_net)", value=False | |
) | |
normalize_numbers = st.checkbox( | |
"Replace numbers with zeros KenLM preprocessing (from cc_net)", value=True | |
) | |
punctuation = st.number_input( | |
"Punctuation mode to use from cc_net KenLM preprocessing", 1, 2, 1 | |
) | |
with st.spinner(text="Loading embedding model..."): | |
model = load_model(model_name) | |
dimensionality_reduction_function = ( | |
partial(get_umap_embeddings, random_state=SEED) | |
if dimensionality_reduction == "UMAP" | |
else partial(get_tsne_embeddings, random_state=SEED) | |
) | |
with st.spinner(text="Loading KenLM model..."): | |
kenlm_model = KenlmModel.from_pretrained( | |
perplexity_model, | |
language, | |
lower_case, | |
remove_accents, | |
normalize_numbers, | |
punctuation, | |
) | |
if uploaded_file or hub_dataset: | |
with st.spinner("Loading dataset..."): | |
if uploaded_file: | |
df = uploaded_file_to_dataframe(uploaded_file) | |
if doc_type == "Sentence": | |
df = documents_df_to_sentences_df(df, text_column, sample, seed=SEED) | |
df["perplexity"] = df[text_column].map(kenlm_model.get_perplexity) | |
else: | |
df = hub_dataset_to_dataframe( | |
hub_dataset, | |
hub_dataset_config, | |
hub_dataset_split, | |
sample, | |
text_column, | |
kenlm_model, | |
seed=SEED, | |
doc_type=doc_type, | |
) | |
# Round perplexity | |
df["perplexity"] = df["perplexity"].round().astype(int) | |
logger.info( | |
f"Perplexity range: {df['perplexity'].min()} - {df['perplexity'].max()}" | |
) | |
plot, plot_registry = generate_plot( | |
df, | |
text_column, | |
"perplexity", | |
None, | |
dimensionality_reduction_function, | |
model, | |
seed=SEED, | |
context_logger=st.spinner, | |
hub_dataset=hub_dataset, | |
) | |
logger.info("Displaying plots") | |
st.bokeh_chart(plot) | |
if hub_dataset == REGISTRY_DATASET: | |
st.bokeh_chart(plot_registry) | |
fig = draw_histogram(df["perplexity"].values) | |
st.pyplot(fig) | |
logger.info("Done") | |