File size: 15,099 Bytes
00fa262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ff5c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00fa262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ff5c58
00fa262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ff5c58
 
 
 
00fa262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ff5c58
00fa262
9ff5c58
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from typing import List

import os
import cv2
import gradio as gr
import numpy as np
import supervision as sv
import torch
from tqdm import tqdm
import cv2
from translate import Translator

from inference.models.yolo_world.yolo_world import YOLOWorld


import datetime
import uuid
from typing import List


def generate_file_name(extension="mp4"):
    current_datetime = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    unique_id = uuid.uuid4()
    return f"{current_datetime}_{unique_id}.{extension}"


def list_files_older_than(directory: str, diff_minutes: int) -> List[str]:
    diff_seconds = diff_minutes * 60
    now = datetime.datetime.now()
    older_files: List[str] = []

    for filename in os.listdir(directory):
        file_path = os.path.join(directory, filename)
        if os.path.isfile(file_path):
            file_mod_time = os.path.getmtime(file_path)
            file_mod_datetime = datetime.datetime.fromtimestamp(file_mod_time)
            time_diff = now - file_mod_datetime
            if time_diff.total_seconds() > diff_seconds:
                older_files.append(file_path)

    return older_files

def remove_files_older_than(directory: str, diff_minutes: int) -> None:
    older_files = list_files_older_than(directory, diff_minutes)
    file_count = len(older_files)

    for file_path in older_files:
        os.remove(file_path)

    now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(
        f"[{now}] Removed {file_count} files older than {diff_minutes} minutes from "
        f"'{directory}' directory."
    )


def calculate_end_frame_index(source_video_path: str) -> int:
    video_info = sv.VideoInfo.from_video_path(source_video_path)
    return video_info.total_frames

def create_directory(directory_path: str) -> None:
    if not os.path.exists(directory_path):
        os.makedirs(directory_path)


MARKDOWN = """
<h1>Porto do Itaqui YOLO-World </h1>


Este é protótipo em fase de execução que será apresentado ao porto do Itaqui com o objetivo de entregar alguma coisa.

"""

RESULTS = "results"

# IMAGE_EXAMPLES = [
#     ['https://media.roboflow.com/dog.jpeg', 'dog, eye, nose, tongue, car', 0.005, 0.1, True, False, False],
#     ['https://media.roboflow.com/albert-4x.png', 'hand, hair', 0.005, 0.1, True, False, False],
# ]
# VIDEO_EXAMPLES = [
#     ['https://media.roboflow.com/supervision/video-examples/croissant-1280x720.mp4', 'croissant', 0.01, 0.2, False, False, False],
#     ['https://media.roboflow.com/supervision/video-examples/suitcases-1280x720.mp4', 'suitcase', 0.1, 0.2, False, False, False],
#     ['https://media.roboflow.com/supervision/video-examples/tokyo-walk-1280x720.mp4', 'woman walking', 0.1, 0.2, False, False, False],
#     ['https://media.roboflow.com/supervision/video-examples/wooly-mammoth-1280x720.mp4', 'mammoth', 0.01, 0.2, False, False, False],
# ]

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# EFFICIENT_SAM_MODEL = load(device=DEVICE)
YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/l")

BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator(thickness=2)
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator(text_thickness=2, text_scale=1, text_color=sv.Color.BLACK)

# creating video results directory
create_directory(directory_path=RESULTS)


def process_categories(categories: str) -> List[str]:
    # Traduzindo as palavras do português para o inglês
    translator = Translator(from_lang="pt", to_lang="en")
    translation = translator.translate(categories)

    return [category.strip() for category in translation.split(',')]


def annotate_image(
    input_image: np.ndarray,
    detections: sv.Detections,
    categories: List[str],
    with_confidence: bool = False,
) -> np.ndarray:
    labels = [
        (
            f"{categories[class_id]}: {confidence:.3f}"
            if with_confidence
            else f"{categories[class_id]}"
        )
        for class_id, confidence in
        zip(detections.class_id, detections.confidence)
    ]
    output_image = MASK_ANNOTATOR.annotate(input_image, detections)
    output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
    output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
    return output_image


def process_image(
    input_image: np.ndarray,
    categories: str,
    confidence_threshold: float = 0.3,
    iou_threshold: float = 0.5,
    # with_segmentation: bool = True,
    with_confidence: bool = False,
    with_class_agnostic_nms: bool = False,
) -> np.ndarray:
    # cleanup of old video files
    remove_files_older_than(RESULTS, 30)

    categories = process_categories(categories)
    YOLO_WORLD_MODEL.set_classes(categories)
    results = YOLO_WORLD_MODEL.infer(input_image, confidence=0.02)
    detections = sv.Detections.from_inference(results)
    detections = detections.with_nms(
        class_agnostic=with_class_agnostic_nms,
        threshold=iou_threshold
    )
    # if with_segmentation:
    #     detections.mask = inference_with_boxes(
    #         image=input_image,
    #         xyxy=detections.xyxy,
    #         model=EFFICIENT_SAM_MODEL,
    #         device=DEVICE
    #     )
    output_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
    output_image = annotate_image(
        input_image=output_image,
        detections=detections,
        categories=categories,
        with_confidence=with_confidence
    )
    return cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)


def process_video(
    input_video: str,
    categories: str,
    confidence_threshold: float = 0.3,
    iou_threshold: float = 0.5,
    # with_segmentation: bool = True,
    with_confidence: bool = False,
    with_class_agnostic_nms: bool = False,
    progress=gr.Progress(track_tqdm=True)
) -> str:
    # cleanup of old video files
    remove_files_older_than(RESULTS, 30)

    categories = process_categories(categories)
    YOLO_WORLD_MODEL.set_classes(categories)
    video_info = sv.VideoInfo.from_video_path(input_video)
    total = calculate_end_frame_index(input_video)
    frame_generator = sv.get_video_frames_generator(
        source_path=input_video,
        end=total
    )
    result_file_name = generate_file_name(extension="mp4")
    result_file_path = os.path.join(RESULTS, result_file_name)
    with sv.VideoSink(result_file_path, video_info=video_info) as sink:
        for _ in tqdm(range(total), desc="Processing video..."):
            frame = next(frame_generator)
            results = YOLO_WORLD_MODEL.infer(frame, confidence=confidence_threshold)
            detections = sv.Detections.from_inference(results)
            detections = detections.with_nms(
                class_agnostic=with_class_agnostic_nms,
                threshold=iou_threshold
            )
            # if with_segmentation:
            #     detections.mask = inference_with_boxes(
            #         image=frame,
            #         xyxy=detections.xyxy,
            #         model=EFFICIENT_SAM_MODEL,
            #         device=DEVICE
            # )
            frame = annotate_image(
                input_image=frame,
                detections=detections,
                categories=categories,
                with_confidence=with_confidence
            )
            sink.write_frame(frame)
    return result_file_path

def process_image_real_time(
    input_image: np.ndarray,
    categories: str = "safety helmet, safety glasses, hearing protectors, protective masks, safety shoes, protective gloves, seat belt, person, bicycle, car, motorcycle, airplane, dining table, bus, train, truck, boat, traffic light, fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake, chair, couch, potted plant, bed, toilet, tv, laptop, mouse, remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy bear, hair drier, toothbrush",
    confidence_threshold: float = 0.3,
    iou_threshold: float = 0.5,
    # with_segmentation: bool = True,
    with_confidence: bool = False,
    with_class_agnostic_nms: bool = False,) -> np.ndarray:
    # cleanup of old video files

    remove_files_older_than(RESULTS, 30)

    categories = process_categories(categories)
    YOLO_WORLD_MODEL.set_classes(categories)
    results = YOLO_WORLD_MODEL.infer(input_image, confidence=0.02)
    detections = sv.Detections.from_inference(results)
    detections = detections.with_nms(
        class_agnostic=with_class_agnostic_nms,
        threshold=iou_threshold
    )
    # if with_segmentation:
    #     detections.mask = inference_with_boxes(
    #         image=input_image,
    #         xyxy=detections.xyxy,
    #         model=EFFICIENT_SAM_MODEL,
    #         device=DEVICE
    #     )
    output_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
    output_image = annotate_image(
        input_image=output_image,
        detections=detections,
        categories=categories,
        with_confidence=with_confidence
    )
    return cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)



confidence_threshold_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.03,
    step=0.01,
    label="Limite de Confiança",
    info=(
        "O limite de confiança para o modelo YOLO-World. Reduza o limite para "
        "reduzir falsos negativos, aumentando a sensibilidade do modelo para detectar "
        "objetos procurados. Por outro lado, aumente o limite para minimizar falsos "
        "positivos, evitando que o modelo identifique objetos que não deveria."
    ))

iou_threshold_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.1,
    step=0.01,
    label="Limite IoU",
    info=(
        "Limite de intersecção sobre união (Intersection over Union ou IoU) para supressão não máxima. "
        "Diminua o valor para diminuir a ocorrência de caixas delimitadoras sobrepostas, "
        "tornando o processo de detecção mais rigoroso. Por outro lado, aumente o valor "
        "para permitir mais caixas delimitadoras sobrepostas, acomodando uma gama mais ampla de "
        "detecções."
    ))

with_segmentation_component = gr.Checkbox(
    value=False,
    label="With Segmentation",
    info=(
        "Whether to run EfficientSAM for instance segmentation."
    )
)

with_confidence_component = gr.Checkbox(
    value=False,
    label="Mostrar confiança.",
    info=(
        "Mostrar ou não a confiança dos objetos detectados."
    )
)

with_class_agnostic_nms_component = gr.Checkbox(
    value=False,
    label="Use NMS (Non-Max Supression ou Supressão Não Máxima) independente da classe.",
    info=(
        "Suprima caixas delimitadoras sobrepostas em todas as classes."
    )
)


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Accordion("Configuração", open=False):
        confidence_threshold_component.render()
        iou_threshold_component.render()
        with gr.Row():
            # with_segmentation_component.render()
            with_confidence_component.render()
            with_class_agnostic_nms_component.render()
    with gr.Tab(label="Imagem"):
        with gr.Row():
            input_image_component = gr.Image(
                type='numpy',
                label='Imagem de entrada'
            )
            output_image_component = gr.Image(
                type='numpy',
                label='Imagem de saída'
            )
        with gr.Row():
            image_categories_text_component = gr.Textbox(
                label='Categorias',
                placeholder='Digite as categorias separadas por vírgula',
                scale=7
            )
            image_submit_button_component = gr.Button(
                value='Submeter',
                scale=1,
                variant='primary'
            )
        # gr.Examples(
        #     fn=process_image,
        #     examples=IMAGE_EXAMPLES,
        #     inputs=[
        #         input_image_component,
        #         image_categories_text_component,
        #         confidence_threshold_component,
        #         iou_threshold_component,
        #         with_segmentation_component,
        #         with_confidence_component,
        #         with_class_agnostic_nms_component
        #     ],
        #     outputs=output_image_component
        # )
    with gr.Tab(label="Video"):
        with gr.Row():
            input_video_component = gr.Video(
                label='Video de entrada'
            )
            output_video_component = gr.Video(
                label='Video de saída'
            )
        with gr.Row():
            video_categories_text_component = gr.Textbox(
                label='Categorias',
                placeholder='Digite as categorias separadas por vírgula',
                scale=7
            )
            video_submit_button_component = gr.Button(
                value='Submeter',
                scale=1,
                variant='primary'
            )
        # gr.Examples(
        #     fn=process_video,
        #     examples=VIDEO_EXAMPLES,
        #     inputs=[
        #         input_video_component,
        #         video_categories_text_component,
        #         confidence_threshold_component,
        #         iou_threshold_component,
        #         with_segmentation_component,
        #         with_confidence_component,
        #         with_class_agnostic_nms_component
        #     ],
        #     outputs=output_image_component
        # )
    with gr.Tab(label="Tempo Real"):
        with gr.Row():
            input_real_time_component = gr.Image(label="Entrada", sources=["webcam"], streaming=True)
            output_real_time_component = gr.Image(label="Saída")

    image_submit_button_component.click(
        fn=process_image,
        inputs=[
            input_image_component,
            image_categories_text_component,
            confidence_threshold_component,
            iou_threshold_component,
            # with_segmentation_component,
            with_confidence_component,
            with_class_agnostic_nms_component
        ],
        outputs=output_image_component
    )
    video_submit_button_component.click(
        fn=process_video,
        inputs=[
            input_video_component,
            video_categories_text_component,
            confidence_threshold_component,
            iou_threshold_component,
            # with_segmentation_component,
            with_confidence_component,
            with_class_agnostic_nms_component
        ],
        outputs=output_video_component
    )
    input_real_time_component.change(fn=process_image_real_time,inputs=input_real_time_component, outputs=output_real_time_component)

demo.launch(debug=False, show_error=True, max_threads=1, share=True)