Upload 3 files
Browse files- README.txt +0 -0
- app.py +23 -0
- requirements.txt +3 -0
README.txt
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Initialize the text generation pipeline
|
5 |
+
generator = pipeline("text-generation", model="gpt2")
|
6 |
+
|
7 |
+
def generate_response(prompt):
|
8 |
+
"""Generate text based on the user's prompt."""
|
9 |
+
response = generator(prompt, max_length=100, num_return_sequences=1)
|
10 |
+
return response[0]["generated_text"]
|
11 |
+
|
12 |
+
# Create a Gradio interface
|
13 |
+
interface = gr.Interface(
|
14 |
+
fn=generate_response,
|
15 |
+
inputs="text",
|
16 |
+
outputs="text",
|
17 |
+
title="Simple LLM",
|
18 |
+
description="Enter a prompt to get a response generated by GPT-2!"
|
19 |
+
)
|
20 |
+
|
21 |
+
# Launch the app
|
22 |
+
if __name__ == "__main__":
|
23 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
gradio
|