object-to-object-replace / only_gradio_server.py
nikunjkdtechnoland
add bg remover
e9d702e
raw
history blame
5.72 kB
import os
import io
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image
from iopaint.single_processing import batch_inpaint_cv2
import gradio as gr
from bgremover import process
# set current working directory cache instead of default
os.environ["TORCH_HOME"] = "./pretrained-model"
os.environ["HUGGINGFACE_HUB_CACHE"] = "./pretrained-model"
def resize_image(input_image_path, width=640, height=640):
"""Resizes an image from image data and returns the resized image."""
try:
# Read the image using cv2.imread
img = cv2.imread(input_image_path, cv2.IMREAD_COLOR)
# Resize while maintaining the aspect ratio
shape = img.shape[:2] # current shape [height, width]
new_shape = (width, height) # the shape to resize to
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
# Resize the image
im = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
# Pad the image
color = (114, 114, 114) # color used for padding
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
# divide padding into 2 sides
dw /= 2
dh /= 2
# compute padding on all corners
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im
except Exception as e:
raise gr.Error("Error in resizing image!")
def process_images(input_image, append_image, default_class="chair"):
if not input_image:
raise gr.Error("Please upload a main image.")
if not append_image:
raise gr.Error("Please upload an object image.")
# Resize input image and get base64 data of resized image
img = resize_image(input_image)
if img is None:
raise gr.Error("Failed to decode resized image!")
H, W, _ = img.shape
x_point = 0
y_point = 0
width = 1
height = 1
# Load a model
model = YOLO('pretrained-model/yolov8m-seg.pt') # pretrained YOLOv8m-seg model
# Run batched inference on a list of images
results = model(img, imgsz=(W,H), conf=0.5) # chair class 56 with confidence >= 0.5
names = model.names
class_found = False
for result in results:
for i, label in enumerate(result.boxes.cls):
# Check if the label matches the chair label
if names[int(label)] == default_class:
class_found = True
# Convert the tensor to a numpy array
chair_mask_np = result.masks.data[i].numpy()
kernel = np.ones((5, 5), np.uint8) # Create a 5x5 kernel for dilation
chair_mask_np = cv2.dilate(chair_mask_np, kernel, iterations=2) # Apply dilation
# Find contours to get bounding box
contours, _ = cv2.findContours((chair_mask_np == 1).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Iterate over contours to find the bounding box of each object
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
x_point = x
y_point = y
width = w
height = h
# Get the corresponding mask
mask = result.masks.data[i].numpy() * 255
dilated_mask = cv2.dilate(mask, kernel, iterations=2) # Apply dilation
# Resize the mask to match the dimensions of the original image
resized_mask = cv2.resize(dilated_mask, (img.shape[1], img.shape[0]))
# call repainting and merge function
output_numpy = repaitingAndMerge(append_image,width, height, x_point, y_point, img, resized_mask)
# Return the output numpy image in the API response
return output_numpy
# return class not found in prediction
if not class_found:
raise gr.Error(f'{default_class} object not found in the image')
def repaitingAndMerge(append_image_path, width, height, xposition, yposition, input_base, mask_base):
# lama inpainting start
print("lama inpainting start")
inpaint_result_np = batch_inpaint_cv2('lama', 'cpu', input_base, mask_base)
print("lama inpainting end")
# Create PIL Image from NumPy array
final_image = Image.fromarray(inpaint_result_np)
print("merge start")
# Load the append image using cv2.imread
append_image = cv2.imread(append_image_path, cv2.IMREAD_UNCHANGED)
# Resize the append image while preserving transparency
resized_image = cv2.resize(append_image, (width, height), interpolation=cv2.INTER_AREA)
# Convert the resized image to RGBA format (assuming it's in BGRA format)
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGRA2RGBA)
# Create a PIL Image from the resized image with transparent background
#append_image_pil = Image.fromarray(resized_image)
# remove the bg from image
append_image_pil = process(resized_image)
# Paste the append image onto the final image
final_image.paste(append_image_pil, (xposition, yposition), append_image_pil)
# Save the resulting image
print("merge end")
# Convert the final image to base64
with io.BytesIO() as output_buffer:
final_image.save(output_buffer, format='PNG')
output_numpy = np.array(final_image)
return output_numpy