File size: 6,107 Bytes
65efad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import random
import requests
import torch
import time
import gradio as gr
from io import BytesIO
from PIL import Image
import imageio
from dotenv import load_dotenv
import os

load_dotenv("config.txt")

path_to_base_model = os.getenv("path_to_base_model")
path_to_inpaint_model = os.getenv("path_to_inpaint_model")

xl = os.getenv("xl")

if xl == "True":
    from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline
    pipe_t2i = StableDiffusionXLPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True)
    pipe_t2i = pipe_t2i.to("cuda")

    pipe_i2i = StableDiffusionXLImg2ImgPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True)
    pipe_i2i = pipe_i2i.to("cuda")

    pipe_inpaint = StableDiffusionXLInpaintPipeline.from_single_file(path_to_inpaint_model, torch_dtype=torch.float16, use_safetensors=True)
    pipe_inpaint = pipe_inpaint.to("cuda")
else:
    from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline
    pipe_t2i = StableDiffusionPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True)
    pipe_t2i = pipe_t2i.to("cuda")

    pipe_i2i = StableDiffusionImg2ImgPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True)
    pipe_i2i = pipe_i2i.to("cuda")

    pipe_inpaint = StableDiffusionInpaintPipeline.from_single_file(path_to_inpaint_model, torch_dtype=torch.float16, use_safetensors=True)
    pipe_inpaint = pipe_inpaint.to("cuda")


pipe_t2i.load_lora_weights(pretrained_model_name_or_path_or_dict="models/lora", weight_name="epic_noiseoffset.safetensors")
pipe_t2i.fuse_lora(lora_scale=0.1)

pipe_i2i.load_lora_weights(pretrained_model_name_or_path_or_dict="models/lora", weight_name="epic_noiseoffset.safetensors")
pipe_i2i.fuse_lora(lora_scale=0.1)

pipe_inpaint.load_lora_weights(pretrained_model_name_or_path_or_dict="models/lora", weight_name="epic_noiseoffset.safetensors")
pipe_inpaint.fuse_lora(lora_scale=0.1)


def gpugen(prompt, mode, guidance, width, height, num_images, i2i_strength, inpaint_strength, i2i_change, inpaint_change, init=None, inpaint_image=None, progress = gr.Progress(track_tqdm=True)):
    if mode == "Fast":
        steps = 30
    elif mode == "High Quality":
        steps = 45
    else:
        steps = 20
    results = []
    seed = random.randint(1, 9999999)
    if not i2i_change and not inpaint_change:
        num = random.randint(100, 99999)
        start_time = time.time()
        for _ in range(num_images):
            image = pipe_t2i(
                prompt=f"{prompt}, epic realistic, faded, ((neutral colors)), art, (hdr:1.5), (muted colors:1.2), pastel, hyperdetailed, (artstation:1.5), warm lights, dramatic light, (intricate details:1.2), vignette, complex background, rutkowski",
                negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                num_inference_steps=steps,
                guidance_scale=guidance,
                width=width, height=height,
                seed=seed,
            ).images
            image[0].save(f"outputs/{num}_txt2img_gpu{_}.jpg")
            results.append(image[0])
        end_time = time.time()
        execution_time = end_time - start_time
        return results, f"Time taken: {execution_time} sec."
    elif inpaint_change and not i2i_change:
        imageio.imwrite("output_image.png", inpaint_image["mask"])

        num = random.randint(100, 99999)
        start_time = time.time()
        for _ in range(num_images):
            image = pipe_inpaint(
                prompt=f"{prompt}, epic realistic, faded, ((neutral colors)), art, (hdr:1.5), (muted colors:1.2), pastel, hyperdetailed, (artstation:1.5), warm lights, dramatic light, (intricate details:1.2), vignette, complex background, rutkowski",
                image=inpaint_image["image"],
                mask_image=inpaint_image["mask"],
                negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                num_inference_steps=steps,
                guidance_scale=guidance,
                strength=inpaint_strength,
                width=width, height=height,
                seed=seed,
            ).images
            image[0].save(f"outputs/{num}_inpaint_gpu{_}.jpg")
            results.append(image[0])
        end_time = time.time()
        execution_time = end_time - start_time
        return results, f"Time taken: {execution_time} sec."
    
    else:
        num = random.randint(100, 99999)
        start_time = time.time()
        for _ in range(num_images):
            image = pipe_i2i(
                prompt=f"{prompt}, epic realistic, faded, ((neutral colors)), art, (hdr:1.5), (muted colors:1.2), pastel, hyperdetailed, (artstation:1.5), warm lights, dramatic light, (intricate details:1.2), vignette, complex background, rutkowski",
                negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                image=init,
                num_inference_steps=steps,
                guidance_scale=guidance,
                width=width, height=height,
                strength=i2i_strength,
                seed=seed,
            ).images
            image[0].save(f"outputs/{num}_img2img_gpu{_}.jpg")
            results.append(image[0])
        end_time = time.time()
        execution_time = end_time - start_time
        return results, f"Time taken: {execution_time} sec."