import random import requests import torch import time import gradio as gr from io import BytesIO from PIL import Image import imageio from dotenv import load_dotenv import os load_dotenv("config.txt") path_to_base_model = os.getenv("path_to_base_model") path_to_inpaint_model = os.getenv("path_to_inpaint_model") xl = os.getenv("xl") if xl == "True": from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline pipe_t2i = StableDiffusionXLPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True) pipe_t2i = pipe_t2i.to("cuda") pipe_i2i = StableDiffusionXLImg2ImgPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True) pipe_i2i = pipe_i2i.to("cuda") pipe_inpaint = StableDiffusionXLInpaintPipeline.from_single_file(path_to_inpaint_model, torch_dtype=torch.float16, use_safetensors=True) pipe_inpaint = pipe_inpaint.to("cuda") else: from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline pipe_t2i = StableDiffusionPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True) pipe_t2i = pipe_t2i.to("cuda") pipe_i2i = StableDiffusionImg2ImgPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True) pipe_i2i = pipe_i2i.to("cuda") pipe_inpaint = StableDiffusionInpaintPipeline.from_single_file(path_to_inpaint_model, torch_dtype=torch.float16, use_safetensors=True) pipe_inpaint = pipe_inpaint.to("cuda") pipe_t2i.load_lora_weights(pretrained_model_name_or_path_or_dict="models/lora", weight_name="epic_noiseoffset.safetensors") pipe_t2i.fuse_lora(lora_scale=0.1) pipe_i2i.load_lora_weights(pretrained_model_name_or_path_or_dict="models/lora", weight_name="epic_noiseoffset.safetensors") pipe_i2i.fuse_lora(lora_scale=0.1) pipe_inpaint.load_lora_weights(pretrained_model_name_or_path_or_dict="models/lora", weight_name="epic_noiseoffset.safetensors") pipe_inpaint.fuse_lora(lora_scale=0.1) def gpugen(prompt, mode, guidance, width, height, num_images, i2i_strength, inpaint_strength, i2i_change, inpaint_change, init=None, inpaint_image=None, progress = gr.Progress(track_tqdm=True)): if mode == "Fast": steps = 30 elif mode == "High Quality": steps = 45 else: steps = 20 results = [] seed = random.randint(1, 9999999) if not i2i_change and not inpaint_change: num = random.randint(100, 99999) start_time = time.time() for _ in range(num_images): image = pipe_t2i( prompt=f"{prompt}, epic realistic, faded, ((neutral colors)), art, (hdr:1.5), (muted colors:1.2), pastel, hyperdetailed, (artstation:1.5), warm lights, dramatic light, (intricate details:1.2), vignette, complex background, rutkowski", negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", num_inference_steps=steps, guidance_scale=guidance, width=width, height=height, seed=seed, ).images image[0].save(f"outputs/{num}_txt2img_gpu{_}.jpg") results.append(image[0]) end_time = time.time() execution_time = end_time - start_time return results, f"Time taken: {execution_time} sec." elif inpaint_change and not i2i_change: imageio.imwrite("output_image.png", inpaint_image["mask"]) num = random.randint(100, 99999) start_time = time.time() for _ in range(num_images): image = pipe_inpaint( prompt=f"{prompt}, epic realistic, faded, ((neutral colors)), art, (hdr:1.5), (muted colors:1.2), pastel, hyperdetailed, (artstation:1.5), warm lights, dramatic light, (intricate details:1.2), vignette, complex background, rutkowski", image=inpaint_image["image"], mask_image=inpaint_image["mask"], negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", num_inference_steps=steps, guidance_scale=guidance, strength=inpaint_strength, width=width, height=height, seed=seed, ).images image[0].save(f"outputs/{num}_inpaint_gpu{_}.jpg") results.append(image[0]) end_time = time.time() execution_time = end_time - start_time return results, f"Time taken: {execution_time} sec." else: num = random.randint(100, 99999) start_time = time.time() for _ in range(num_images): image = pipe_i2i( prompt=f"{prompt}, epic realistic, faded, ((neutral colors)), art, (hdr:1.5), (muted colors:1.2), pastel, hyperdetailed, (artstation:1.5), warm lights, dramatic light, (intricate details:1.2), vignette, complex background, rutkowski", negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", image=init, num_inference_steps=steps, guidance_scale=guidance, width=width, height=height, strength=i2i_strength, seed=seed, ).images image[0].save(f"outputs/{num}_img2img_gpu{_}.jpg") results.append(image[0]) end_time = time.time() execution_time = end_time - start_time return results, f"Time taken: {execution_time} sec."