File size: 3,937 Bytes
a9106b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8506f85
39d9780
 
a9106b7
 
 
 
 
 
 
 
bd77505
a9106b7
 
 
 
 
 
 
 
 
 
19cb03a
a9106b7
 
19cb03a
a9106b7
 
 
 
 
 
 
19cb03a
a9106b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6682edc
 
 
 
 
 
a9106b7
6682edc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9106b7
6682edc
 
 
 
a9106b7
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import (
    AutoModelForCausalLM,
    BitsAndBytesConfig,
    GemmaTokenizerFast,
    TextIteratorStreamer,
)

DESCRIPTION = """\
# Gemma 2 9B IT

Gemma 2 is Google's latest iteration of open LLMs.
This is a demo of [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it), fine-tuned for instruction following.
For more details, please check [our post](https://huggingface.co/blog/gemma2).

πŸ‘‰ Looking for a larger and more powerful version? Try the 27B version in [HuggingChat](https://huggingface.co/chat/models/google/gemma-2-27b-it).
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "ehristoforu/Gemma2-9b-it-train1"
tokenizer = GemmaTokenizerFast.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    quantization_config=BitsAndBytesConfig(load_in_8bit=True),
)
model.config.sliding_window = 4096
model.eval()


@spaces.GPU(duration=50)
def generate(
    message: str,
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    conversation.append({"role": "system", "content": system_prompt})
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

message = gr.Textbox(
    label="Message",
    max_lines=5,
    lines=2,
    interactive=True,
)

system_prompt = gr.Textbox(
    label="System prompt",
    max_lines=5,
    lines=2,
    interactive=True,
)
max_tokens = gr.Slider(
    label="Max new tokens",
    minimum=1,
    maximum=MAX_MAX_NEW_TOKENS,
    step=1,
        value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
    label="Temperature",
    minimum=0.1,
    maximum=4.0,
    step=0.1,
    value=0.6,
)
top_p = gr.Slider(
    label="Top-p (nucleus sampling)",
    minimum=0.05,
    maximum=1.0,
    step=0.05,
    value=0.9,
)
top_k = gr.Slider(
    label="Top-k",
    minimum=1,
    maximum=1000,
    step=1,
    value=50,
)
repeat_penalty = gr.Slider(
    label="Repetition penalty",
    minimum=1.0,
    maximum=2.0,
    step=0.05,
    value=1.2,
)

output = gr.Textbox(
    label="Output",
    max_lines=16,
    lines=10,
    interactive=True,
)

chat_interface = gr.Interface(
    fn=generate,
    inputs=[message, system_prompt, max_tokens, temperature, top_p, top_k, repeat_penalty],
    outputs=output,
    api_name="/run",

)

with gr.Blocks(css="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()