File size: 6,045 Bytes
42c1e5a
628b052
 
 
 
 
 
 
42c1e5a
 
 
628b052
42c1e5a
 
628b052
42c1e5a
628b052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42c1e5a
628b052
 
 
 
42c1e5a
628b052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import streamlit as st
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
from streamlit_chat import message
import time
import random
import os
api = os.environ.get("api_key")

def text():
    st.title("Vanilla Chat")
    st.markdown("""
                <style>
                    .anim-typewriter {
                        animation: typewriter 3s steps(40) 1s 1 normal both, blinkTextCursor 800ms steps(40) infinite normal;
                        overflow: hidden;
                        white-space: nowrap;
                        border-right: 3px solid;
                        font-family: serif;
                        font-size: 0.9em;
                    }
                    @keyframes typewriter {
                        from {
                            width: 0;
                        }
                        to {
                            width: 100%;
                            height: 100%
                        }
                    }
                    @keyframes blinkTextCursor {
                        from {
                            border-right-color: rgba(255, 255, 255, 0.75);
                        }
                        to {
                            border-right-color: transparent;
                        }
                    }
                </style>
            """, unsafe_allow_html=True)
    text ="Hello 👋, how may I assist you today?"
    animated_output = f'<div class="line-1 anim-typewriter">{text}</div>'

    with st.chat_message("assistant").markdown(animated_output,unsafe_allow_html=True ):
        st.markdown(animated_output,unsafe_allow_html=True)
    apiKey = api
    msgs = StreamlitChatMessageHistory(key="special_app_key")

    memory = ConversationBufferMemory(memory_key="history", chat_memory=msgs)
    if len(msgs.messages) == 0:
        msgs.add_ai_message("How can I help you?")
    template = """You are an AI chatbot having a conversation with a human.

    {history}
    Human: {human_input}
    AI: """
    prompt = PromptTemplate(input_variables=["history", "human_input"], template=template)
    llm_chain = LLMChain( llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=apiKey), prompt=prompt, memory = memory)

    if 'messages' not in st.session_state:
        st.session_state['messages'] = []

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    prompt = st.chat_input("Say something")

    if prompt:
        with st.chat_message("user").markdown(prompt):
            st.session_state.messages.append(
                {
                    "role": "user",
                    "content": prompt
                }
            )
        # Custom HTML and CSS for three-dot animation
        spinner_html = """
        <div class="col-3">
        <div class="snippet" data-title="dot-pulse">
          <div class="stage">
            <div class="dot-pulse"></div>
          </div>
        </div>
      </div>
        """

        spinner_css = """
        .dot-pulse {
  position: relative;
  left: -9999px;

  width: 10px;
  height: 10px;
  border-radius: 5px;
  background-color: #9880ff;
  color: #9880ff;
  box-shadow: 9999px 0 0 -5px;
  animation: dot-pulse 1.5s infinite linear;
  animation-delay: 0.25s;
}
.dot-pulse::before, .dot-pulse::after {
  content: "";
  display: inline-block;
  position: absolute;
  top: 0;
  width: 10px;
  height: 10px;
  border-radius: 5px;
  background-color: #9880ff;
  color: #9880ff;
}
.dot-pulse::before {
  box-shadow: 9984px 0 0 -5px;
  animation: dot-pulse-before 1.5s infinite linear;
  animation-delay: 0s;
}
.dot-pulse::after {
  box-shadow: 10014px 0 0 -5px;
  animation: dot-pulse-after 1.5s infinite linear;
  animation-delay: 0.5s;
}

@keyframes dot-pulse-before {
  0% {
    box-shadow: 9984px 0 0 -5px;
  }
  30% {
    box-shadow: 9984px 0 0 2px;
  }
  60%, 100% {
    box-shadow: 9984px 0 0 -5px;
  }
}
@keyframes dot-pulse {
  0% {
    box-shadow: 9999px 0 0 -5px;
  }
  30% {
    box-shadow: 9999px 0 0 2px;
  }
  60%, 100% {
    box-shadow: 9999px 0 0 -5px;
  }
}
@keyframes dot-pulse-after {
  0% {
    box-shadow: 10014px 0 0 -5px;
  }
  30% {
    box-shadow: 10014px 0 0 2px;
  }
  60%, 100% {
    box-shadow: 10014px 0 0 -5px;
  }
}
        """

        st.markdown(f'<style>{spinner_css}</style>', unsafe_allow_html=True)
        st.markdown(spinner_html, unsafe_allow_html=True)

        for chunk in llm_chain.stream(prompt):
            text_output = chunk.get("text", "")
        st.markdown('<style>.dot-pulse { visibility: hidden; }</style>', unsafe_allow_html=True)

        with st.chat_message("assistant").markdown(text_output):
            st.session_state.messages.append(
                {
                    "role": "assistant",
                    "content": text_output
                }
            )

        #with st.chat_message("assistant"):
            #message_placeholder = st.empty()
            #full_response = ""
            #assistant_response = random.choice(
            #[
                #"Hello there! How can I assist you today?",
                #"Hi, human! Is there anything I can help you with?",
               # "Do you need help?",
           # ]
      #  )
        # Simulate stream of response with milliseconds delay
           # for chunk in text_output.split():
              #  full_response += chunk + " "
           #     time.sleep(0.05)
            # Add a blinking cursor to simulate typing
          #      message_placeholder.markdown(full_response + "▌")
        #    message_placeholder.markdown(full_response)
    # Add assistant response to chat history
      #  st.session_state.messages.append({"role": "assistant", "content": full_response})