File size: 12,779 Bytes
0b43831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1487a
0b43831
395a84b
 
0b43831
 
 
 
 
 
 
395a84b
 
0b43831
 
 
395a84b
 
 
 
0b43831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395a84b
 
0b43831
 
 
 
 
 
 
395a84b
 
0b43831
 
218c37d
0b43831
395a84b
0b43831
 
 
218c37d
 
 
 
 
 
 
 
0b43831
218c37d
395a84b
 
 
218c37d
 
395a84b
218c37d
0b43831
218c37d
 
 
0e1487a
 
 
0b43831
 
 
 
 
 
 
e7b3a9f
 
 
 
0e1487a
e7b3a9f
 
395a84b
e7b3a9f
 
 
 
 
 
 
 
 
0b43831
 
0e1487a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b43831
 
 
 
 
218c37d
 
 
 
 
 
 
 
 
0b43831
42a21dd
0b43831
 
0e1487a
 
 
 
 
 
561ab5b
0e1487a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a358d3
0e1487a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
import json

import numpy as np
import ffmpeg
import whisper
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from sklearn.tree import DecisionTreeRegressor
import torch
import youtube_dl
import pandas as pd
import streamlit as st
import altair as alt

DATA_DIR = "./data"
if not os.path.exists(DATA_DIR):
    os.makedirs(DATA_DIR)

YDL_OPTS = {
    "download_archive": os.path.join(DATA_DIR, "archive.txt"),
    "format": "bestaudio/best",
    "outtmpl": os.path.join(DATA_DIR, "%(title)s.%(ext)s"),
    "postprocessors": [
        {
            "key": "FFmpegExtractAudio",
            "preferredcodec": "mp3",
            "preferredquality": "192",
        }
    ],
}

llm = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
device = "cuda" if torch.cuda.is_available() else "cpu"


def download(url, ydl_opts):
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        result = ydl.extract_info("{}".format(url))
        fname = ydl.prepare_filename(result)
        return fname


def transcribe(audio_path, transcript_path):
    if os.path.exists(transcript_path):
        with open(transcript_path, "r") as f:
            result = json.load(f)
    else:
        whisper_model = whisper.load_model("base")
        result = whisper_model.transcribe(audio_path)
        with open(transcript_path, "w") as f:
            json.dump(result, f)
    return result["segments"]


def compute_seg_durations(segments):
    return [s["end"] - s["start"] for s in segments]


def compute_info_densities(
    segments, seg_durations, llm, tokenizer, device, ctxt_len=512
):
    seg_encodings = [tokenizer(seg["text"], return_tensors="pt") for seg in segments]
    input_ids = [enc.input_ids.to(device) for enc in seg_encodings]
    seg_lens = [x.shape[1] for x in input_ids]
    cat_input_ids = torch.cat(input_ids, axis=1)
    end = 0
    seg_nlls = []
    n = cat_input_ids.shape[1]
    for i, seg_len in enumerate(seg_lens):
        end = min(n, end + seg_len)
        start = max(0, end - ctxt_len)
        ctxt_ids = cat_input_ids[:, start:end]
        target_ids = ctxt_ids.clone()
        target_ids[:, :-seg_len] = -100
        avg_nll = llm(ctxt_ids, labels=target_ids).loss.detach().numpy()
        nll = avg_nll * seg_len
        seg_nlls.append(nll)
    seg_nlls = np.array(seg_nlls)
    info_densities = seg_nlls / seg_durations
    return info_densities


def smooth_info_densities(info_densities, seg_durations, max_leaf_nodes, min_sec_leaf):
    min_samples_leaf = int(np.ceil(min_sec_leaf / np.mean(seg_durations)))
    tree = DecisionTreeRegressor(
        max_leaf_nodes=max_leaf_nodes, min_samples_leaf=min_samples_leaf
    )
    X = np.arange(0, len(info_densities), 1)[:, np.newaxis]
    tree.fit(X, info_densities)
    smoothed_info_densities = tree.predict(X)
    return smoothed_info_densities


def squash_segs(segments, info_densities):
    start = segments[0]["start"]
    end = None
    seg_times = []
    seg_densities = [info_densities[0]]
    for i in range(1, len(segments)):
        curr_density = info_densities[i]
        if curr_density != info_densities[i - 1]:
            seg = segments[i]
            seg_start = seg["start"]
            seg_times.append((start, seg_start))
            seg_densities.append(curr_density)
            start = seg_start
    seg_times.append((start, segments[-1]["end"]))
    return seg_times, seg_densities


def compute_speedups(info_densities):
    avg_density = np.mean(info_densities)
    speedups = avg_density / info_densities
    return speedups


def compute_actual_speedup(durations, speedups, total_duration):
    spedup_durations = durations / speedups
    spedup_total_duration = spedup_durations.sum()
    actual_speedup_factor = total_duration / spedup_total_duration
    return spedup_total_duration, actual_speedup_factor


def postprocess_speedups(
    speedups, factor, min_speedup, max_speedup, durations, total_duration, thresh=0.01
):
    assert min_speedup <= factor and factor <= max_speedup
    tuned_factor = np.array([factor / 10, factor * 10])
    actual_speedup_factor = None
    while (
        actual_speedup_factor is None
        or abs(actual_speedup_factor - factor) / factor > thresh
    ):
        mid = tuned_factor.mean()
        tuned_speedups = speedups * mid
        tuned_speedups = np.round(tuned_speedups, decimals=2)
        tuned_speedups = np.clip(tuned_speedups, min_speedup, max_speedup)
        _, actual_speedup_factor = compute_actual_speedup(
            durations, tuned_speedups, total_duration
        )
        tuned_factor[0 if actual_speedup_factor < factor else 1] = mid
    return tuned_speedups


def cat_clips(seg_times, speedups, audio_path, output_path):
    if os.path.exists(output_path):
        os.remove(output_path)
    in_file = ffmpeg.input(audio_path)
    segs = []
    for (start, end), speedup in zip(seg_times, speedups):
        seg = in_file.filter("atrim", start=start, end=end).filter("atempo", speedup)
        segs.append(seg)
    cat = ffmpeg.concat(*segs, v=0, a=1)
    cat.output(output_path).run()


def format_duration(duration):
    s = duration % 60
    m = duration // 60
    h = m // 60
    return "%02d:%02d:%02d" % (h, m, s)


def strike(url, speedup_factor, min_speedup, max_speedup, max_num_segments):

    assert min_speedup >= 0.5  # ffmpeg limit

    with st.spinner("downloading..."):
        name = download(url, YDL_OPTS)
    assert name.endswith(".m4a")
    name = name.split(".m4a")[0].split("/")[-1]

    audio_path = os.path.join(DATA_DIR, "%s.mp3" % name)
    transcript_path = os.path.join(DATA_DIR, "%s.json" % name)
    output_path = os.path.join(DATA_DIR, "%s_smooth.mp3" % name)

    with st.spinner("transcribing..."):
        segments = transcribe(audio_path, transcript_path)

    seg_durations = compute_seg_durations(segments)

    with st.spinner("calculating information density..."):
        info_densities = compute_info_densities(
            segments, seg_durations, llm, tokenizer, device
        )

    total_duration = segments[-1]["end"] - segments[0]["start"]
    min_sec_leaf = total_duration / max_num_segments
    smoothed_info_densities = smooth_info_densities(
        info_densities, seg_durations, max_num_segments, min_sec_leaf
    )

    squashed_times, squashed_densities = squash_segs(segments, smoothed_info_densities)
    squashed_durations = np.array([end - start for start, end in squashed_times])

    speedups = compute_speedups(squashed_densities)
    speedups = postprocess_speedups(
        speedups,
        speedup_factor,
        min_speedup,
        max_speedup,
        squashed_durations,
        total_duration,
    )

    with st.spinner("stitching segments..."):
        cat_clips(squashed_times, speedups, audio_path, output_path)

    times = np.array([(seg["start"] + seg["end"]) / 2 for seg in segments])
    times /= 60
    annotations = [seg["text"] for seg in segments]
    data = [times, info_densities / np.log(2), annotations]
    cols = ["time (minutes)", "bits per second", "transcript"]
    df = pd.DataFrame(list(zip(*data)), columns=cols)
    min_time = segments[0]["start"] / 60
    max_time = segments[-1]["end"] / 60
    lines = (
        alt.Chart(df, title="information rate")
        .mark_line(color="gray")
        .encode(
            x=alt.X(cols[0], scale=alt.Scale(domain=(min_time, max_time))),
            y=cols[1],
        )
    )
    hover = alt.selection_single(
        fields=cols[:1],
        nearest=True,
        on="mouseover",
        empty="none",
    )
    points = lines.transform_filter(hover).mark_circle(size=65, color="orange")
    tooltips = (
        alt.Chart(df)
        .mark_rule(color="orange")
        .encode(
            x=alt.X(cols[0], scale=alt.Scale(domain=(min_time, max_time))),
            y=cols[1],
            opacity=alt.condition(hover, alt.value(1), alt.value(0)),
            tooltip=[alt.Tooltip("transcript", title="transcript")],
        )
        .add_selection(hover)
    )
    chart = (lines + points + tooltips).interactive()
    st.altair_chart(chart, use_container_width=True)
    st.info("hover over the plot above this message to read the transcript")

    st.write("sped-up audio:")
    st.audio(output_path)

    times = sum([list(x) for x in squashed_times], [])
    times = np.array(times)
    times /= 60
    data = [times, np.repeat(speedups, 2)]
    cols = ["time (minutes)", "speedup"]
    df = pd.DataFrame(list(zip(*data)), columns=cols)
    min_actual_speedups = min(speedups)
    max_actual_speedups = max(speedups)
    eps = 0.1
    lines = (
        alt.Chart(df, title="adaptive speedup based on information rate")
        .mark_line()
        .encode(
            x=alt.X(cols[0], scale=alt.Scale(domain=(min_time, max_time))),
            y=alt.Y(
                cols[1],
                scale=alt.Scale(
                    domain=(min_actual_speedups - eps, max_actual_speedups + eps)
                ),
            ),
        )
    )
    st.altair_chart(lines.interactive(), use_container_width=True)


st.markdown(
    """
## cobra
cobra stands for (co)nstant (b)it-(r)ate (a)udio.
it's a tool for speeding up audio from podcasts and lectures.
instead of applying the same speedup (like 1.5x) to the entire file,
it applies a higher speedup to parts of the file with less information content
, and a lower speedup to parts with higher information content.
it measures information content using a language model.

## usage
1. enter a youtube url
2. specify your desired overall speedup
3. specify your minimum speedup. no segment of the file will be sped up slower than this.
4. specify your maximum speedup. no segment of the file will be sped up faster than this.
5. specify how much variance you'd like to see in the speedup over time (2 = constant speedup throughout the file, 100 = frequently-changing speedup)
6. hit submit
7. wait for the charts and processed audio to appear. it can take a while to download, transcribe, calculate information density, and stitch segments.
"""
)

with st.form("my_form"):
    url = st.text_input(
        "youtube url", value="https://www.youtube.com/watch?v=_3MBQm7GFIM"
    )
    speedup_factor = st.slider(
        "overall speedup for entire file", min_value=0.5, max_value=5.0, value=1.5
    )
    min_speedup = st.slider(
        "minimum speedup per segment", min_value=0.5, max_value=5.0, value=1.0
    )
    max_speedup = st.slider(
        "maximum speedup per segment", min_value=0.5, max_value=5.0, value=2.0
    )
    max_num_segments = st.slider(
        "variance in speedup across segments", min_value=2, max_value=100, value=20
    )
    submitted = st.form_submit_button("submit")
    if min_speedup <= speedup_factor and speedup_factor <= max_speedup:
        if submitted:
            st.write("original video:")
            st.video(url)
            strike(url, speedup_factor, min_speedup, max_speedup, max_num_segments)
    else:
        st.error("speedup must be between min and max")

st.markdown(
    """
## example
"""
)
st.image(
    "example.png",
    caption="the information rate is lower in the first half of the video, when they are bs'ing and using buzzwords, so the speedup is higher. the information rate is higher in the second half of the video, when they walk through a concrete example of codex solving a challenging programming problem, so the speedup is lower.",
)

st.markdown(
    """
## algorithm
1. download the audio of a youtube video (e.g., a podcast or lecture) using [youtube-dl](https://youtube-dl.org/)
2. use [whisper](https://github.com/openai/whisper) to transcribe the audio into text
3. use the [flan-t5](https://huggingface.co/docs/transformers/model_doc/flan-t5) language model to compute the negative log-likelihood of each text token given the previous tokens
4. compute the information rate of each text segment in the transcript: negative log-likelihood of all tokens in segment divided by duration of segment
5. fit a piecewise-constant function to the information rate vs. time data using a decision tree regression model from [scikit-learn](https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html).  this lets us control the number of segments that will be stitched together in step 8, which can run slowly if the number of segments is too large.
6. compute speedup for each segment: 1 / information rate (induces constant bit-rate over time)
7. clip speedups with user's min and max, and use binary search to find linear scaling factor that matches the user's desired overall speedup
8. apply scaled and clipped speedups to each segment, and stitch the segments together using [ffmpeg](https://ffmpeg.org/)
"""
)