cobra / app.py
einanao's picture
draft streamlit app
0b43831
raw
history blame
8.74 kB
import os
import json
import numpy as np
import ffmpeg
import whisper
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from sklearn.tree import DecisionTreeRegressor
import torch
import youtube_dl
import pandas as pd
import streamlit as st
import altair as alt
DATA_DIR = "./data"
if not os.path.exists(DATA_DIR):
os.makedirs(DATA_DIR)
YDL_OPTS = {
"download_archive": os.path.join(DATA_DIR, "archive.txt"),
"format": "bestaudio/best",
"outtmpl": os.path.join(DATA_DIR, "%(title)s.%(ext)s"),
"postprocessors": [
{
"key": "FFmpegExtractAudio",
"preferredcodec": "mp3",
"preferredquality": "192",
}
],
}
llm = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
device = "cuda" if torch.cuda.is_available() else "cpu"
def download(url, ydl_opts):
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info("{}".format(url))
fname = ydl.prepare_filename(result)
return fname
def transcribe(audio_path, transcript_path):
if os.path.exists(transcript_path):
with open(transcript_path, "r") as f:
result = json.load(f)
else:
whisper_model = whisper.load_model("base")
result = whisper_model.transcribe(audio_path)
with open(transcript_path, "w") as f:
json.dump(result, f)
return result["segments"]
def compute_seg_durations(segments):
return [s["end"] - s["start"] for s in segments]
def compute_info_densities(
segments, seg_durations, llm, tokenizer, device, ctxt_len=512
):
seg_encodings = [tokenizer(seg["text"], return_tensors="pt") for seg in segments]
input_ids = [enc.input_ids.to(device) for enc in seg_encodings]
seg_lens = [x.shape[1] for x in input_ids]
cat_input_ids = torch.cat(input_ids, axis=1)
end = 0
seg_nlls = []
n = cat_input_ids.shape[1]
for i, seg_len in enumerate(seg_lens):
end = min(n, end + seg_len)
start = max(0, end - ctxt_len)
ctxt_ids = cat_input_ids[:, start:end]
target_ids = ctxt_ids.clone()
target_ids[:, :-seg_len] = -100
avg_nll = llm(ctxt_ids, labels=target_ids).loss.detach().numpy()
nll = avg_nll * seg_len
seg_nlls.append(nll)
seg_nlls = np.array(seg_nlls)
info_densities = seg_nlls / seg_durations
return info_densities
def smooth_info_densities(info_densities, seg_durations, max_leaf_nodes, min_sec_leaf):
min_samples_leaf = int(np.ceil(min_sec_leaf / np.mean(seg_durations)))
tree = DecisionTreeRegressor(
max_leaf_nodes=max_leaf_nodes, min_samples_leaf=min_samples_leaf
)
X = np.arange(0, len(info_densities), 1)[:, np.newaxis]
tree.fit(X, info_densities)
smoothed_info_densities = tree.predict(X)
return smoothed_info_densities
def squash_segs(segments, info_densities):
start = segments[0]["start"]
end = None
seg_times = []
seg_densities = [info_densities[0]]
for i in range(1, len(segments)):
curr_density = info_densities[i]
if curr_density != info_densities[i - 1]:
seg = segments[i]
seg_start = seg["start"]
seg_times.append((start, seg_start))
seg_densities.append(curr_density)
start = seg_start
seg_times.append((start, segments[-1]["end"]))
return seg_times, seg_densities
def compute_speedups(info_densities):
avg_density = np.mean(info_densities)
speedups = avg_density / info_densities
return speedups
def compute_actual_speedup(durations, speedups, total_duration):
spedup_durations = durations / speedups
spedup_total_duration = spedup_durations.sum()
actual_speedup_factor = total_duration / spedup_total_duration
return spedup_total_duration, actual_speedup_factor
def postprocess_speedups(
speedups, factor, min_speedup, max_speedup, durations, total_duration, thresh=0.01
):
assert min_speedup <= factor and factor <= max_speedup
tuned_factor = np.array([factor / 10, factor * 10])
actual_speedup_factor = None
while (
actual_speedup_factor is None
or abs(actual_speedup_factor - factor) / factor > thresh
):
mid = tuned_factor.mean()
tuned_speedups = speedups * mid
tuned_speedups = np.round(tuned_speedups, decimals=2)
tuned_speedups = np.clip(tuned_speedups, min_speedup, max_speedup)
_, actual_speedup_factor = compute_actual_speedup(
durations, tuned_speedups, total_duration
)
tuned_factor[0 if actual_speedup_factor < factor else 1] = mid
return tuned_speedups
def cat_clips(seg_times, speedups, audio_path, output_path):
if os.path.exists(output_path):
os.remove(output_path)
in_file = ffmpeg.input(audio_path)
segs = []
for (start, end), speedup in zip(seg_times, speedups):
seg = in_file.filter("atrim", start=start, end=end).filter("atempo", speedup)
segs.append(seg)
cat = ffmpeg.concat(*segs, v=0, a=1)
cat.output(output_path).run()
def format_duration(duration):
s = duration % 60
m = duration // 60
h = m // 60
return "%02d:%02d:%02d" % (h, m, s)
def strike(url, speedup_factor, min_speedup, max_speedup, max_num_segments):
min_speedup = max(0.5, min_speedup) # ffmpeg limit
name = download(url, YDL_OPTS)
assert name.endswith(".m4a")
name = name.split(".m4a")[0].split("/")[-1]
audio_path = os.path.join(DATA_DIR, "%s.mp3" % name)
transcript_path = os.path.join(DATA_DIR, "%s.json" % name)
output_path = os.path.join(DATA_DIR, "%s_smooth.mp3" % name)
segments = transcribe(audio_path, transcript_path)
seg_durations = compute_seg_durations(segments)
info_densities = compute_info_densities(
segments, seg_durations, llm, tokenizer, device
)
total_duration = segments[-1]["end"] - segments[0]["start"]
min_sec_leaf = total_duration / max_num_segments
smoothed_info_densities = smooth_info_densities(
info_densities, seg_durations, max_num_segments, min_sec_leaf
)
squashed_times, squashed_densities = squash_segs(segments, smoothed_info_densities)
squashed_durations = np.array([end - start for start, end in squashed_times])
speedups = compute_speedups(squashed_densities)
speedups = postprocess_speedups(
speedups,
speedup_factor,
min_speedup,
max_speedup,
squashed_durations,
total_duration,
)
cat_clips(squashed_times, speedups, audio_path, output_path)
spedup_total_duration, actual_speedup_factor = compute_actual_speedup(
squashed_durations, speedups, total_duration
)
st.write("original duration: %s" % format_duration(total_duration))
st.write("new duration: %s" % format_duration(spedup_total_duration))
st.write("speedup: %0.2f" % actual_speedup_factor)
times = np.array([(seg["start"] + seg["end"]) / 2 for seg in segments])
times /= 60
annotations = [seg["text"] for seg in segments]
data = [times, info_densities / np.log(2), annotations]
cols = ["time (minutes)", "bits per second", "transcript"]
df = pd.DataFrame(list(zip(*data)), columns=cols)
lines = (
alt.Chart(df, title="information rate")
.mark_line(color="gray", opacity=0.5)
.encode(
x=cols[0],
y=cols[1],
)
)
dots = (
alt.Chart(df)
.mark_circle(size=50, opacity=1)
.encode(x=cols[0], y=cols[1], tooltip=["transcript"])
)
st.altair_chart((lines + dots).interactive(), use_container_width=True)
times = sum([list(x) for x in squashed_times], [])
times = np.array(times)
times /= 60
data = [times, np.repeat(speedups, 2)]
cols = ["time (minutes)", "speedup"]
df = pd.DataFrame(list(zip(*data)), columns=cols)
st.line_chart(df, x=cols[0], y=cols[1])
return output_path
with st.form("my_form"):
url = st.text_input(
"youtube url", value="https://www.youtube.com/watch?v=_3MBQm7GFIM"
)
speedup_factor = st.slider("speedup", min_value=1.0, max_value=10.0, value=1.5)
min_speedup = 1
max_speedup = st.slider("maximum speedup", min_value=1.0, max_value=10.0, value=2.0)
speedup_factor = min(speedup_factor, max_speedup)
max_num_segments = st.slider(
"variance in speedup over time", min_value=2, max_value=100, value=20
)
submitted = st.form_submit_button("submit")
if submitted:
output_path = strike(
url, speedup_factor, min_speedup, max_speedup, max_num_segments
)
st.audio(output_path)