Spaces:
Build error
Build error
from transformers import TFAutoModelForCausalLM, AutoTokenizer | |
import tensorflow as tf | |
import gradio as gr | |
# configuration params | |
TITLE = "<center><h1>Talk with an AI</h1></center>" | |
# Loading necessary NLP models | |
checkpoint = "elapt1c/ElapticAI-1a" # tf | |
model_gtp2 = TFAutoModelForCausalLM.from_pretrained(checkpoint) | |
tokenizer_gtp2 = AutoTokenizer.from_pretrained(checkpoint) | |
# test-to-test : chatting function -- GPT2 | |
def chat_with_bot(user_input, chat_history_and_input=[]): | |
"""Text generation using GPT2""" | |
emb_user_input = tokenizer_gtp2.encode( | |
user_input + tokenizer_gtp2.eos_token, return_tensors="tf" | |
) | |
if chat_history_and_input == []: | |
bot_input_ids = emb_user_input # first iteration | |
else: | |
bot_input_ids = tf.concat( | |
[chat_history_and_input, emb_user_input], axis=-1 | |
) # other iterations | |
chat_history_and_input = model_gtp2.generate( | |
bot_input_ids, max_length=50, pad_token_id=tokenizer_gtp2.eos_token_id | |
).numpy() | |
bot_response = tokenizer_gtp2.decode( | |
chat_history_and_input[:, bot_input_ids.shape[-1] :][0], | |
skip_special_tokens=True, | |
) | |
# Limit history to last 500 characters | |
chat_history_and_input = chat_history_and_input[:, -500:] | |
return bot_response, chat_history_and_input | |
# gradio interface | |
blocks = gr.Blocks() | |
with blocks: | |
session_state = gr.State([]) | |
gr.Markdown(TITLE) | |
user_input = gr.Textbox(label="User Input") | |
bot_response = gr.Textbox(label="Bot Response") | |
user_input.change( | |
chat_with_bot, | |
inputs=[user_input, session_state], | |
outputs=[bot_response, session_state], | |
) | |
blocks.launch() |