File size: 2,094 Bytes
f0539b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7b634
f0539b9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import streamlit as st
import torch as t
import pandas as pd
from sentence_transformers import SentenceTransformer, util
from time import perf_counter as timer

def load_data(database_file):
    df = pd.read_parquet(database_file)
    chunk_embeddings = t.zeros((df.__len__(), 768))
    for idx in range(len(chunk_embeddings)):
        chunk_embeddings[idx] = t.tensor(df.loc[df.index[idx], "chunk_embeddings"])
    return df, chunk_embeddings

def main():
    st.title("Semantic Text Retrieval App")

    # Select device
    device = "cuda" if t.cuda.is_available() else "cpu"
    st.write(f"Using device: {device}")

    # Load embedding model
    embedding_model = SentenceTransformer(model_name_or_path="all-mpnet-base-v2", device=device)

    # File upload for the database
    database_file = st.file_uploader("Upload the Parquet database file", type=["parquet"])

    if database_file is not None:
        df, chunk_embeddings = load_data(database_file)
        st.success("Database loaded successfully!")

        query = st.text_area("Enter your query:")

        if st.button("Search") and query:
            query_embedding = embedding_model.encode(query)

            # Compute dot product scores
            start_time = timer()
            dot_scores = util.dot_score(query_embedding, chunk_embeddings)[0]
            end_time = timer()

            st.write(f"Time taken to compute scores: {end_time - start_time:.5f} seconds")

            # Get top results
            top_k = st.slider("Select number of top results to display", min_value=1, max_value=10, value=5)
            top_results_dot_product = t.topk(dot_scores, k=top_k)

            st.subheader("Query Results")
            st.write(f"Query: {query}")

            for score, idx in zip(top_results_dot_product[0], top_results_dot_product[1]):
                st.write(f"### Score: {score:.4f}")
                st.write(f"**Text:** {df.iloc[int(idx)]['ext']}")
                st.write(f"**Number of tokens:** {df.iloc[int(idx)]['tokens']}")
                st.write("---")

if __name__ == "__main__":
    main()