import streamlit as st import torch as t import pandas as pd from sentence_transformers import SentenceTransformer, util from time import perf_counter as timer def load_data(database_file): df = pd.read_parquet(database_file) chunk_embeddings = t.zeros((df.__len__(), 768)) for idx in range(len(chunk_embeddings)): chunk_embeddings[idx] = t.tensor(df.loc[df.index[idx], "chunk_embeddings"]) return df, chunk_embeddings def main(): st.title("Semantic Text Retrieval App") # Select device device = "cuda" if t.cuda.is_available() else "cpu" st.write(f"Using device: {device}") # Load embedding model embedding_model = SentenceTransformer(model_name_or_path="all-mpnet-base-v2", device=device) # File upload for the database database_file = st.file_uploader("Upload the Parquet database file", type=["parquet"]) if database_file is not None: df, chunk_embeddings = load_data(database_file) st.success("Database loaded successfully!") query = st.text_area("Enter your query:") if st.button("Search") and query: query_embedding = embedding_model.encode(query) # Compute dot product scores start_time = timer() dot_scores = util.dot_score(query_embedding, chunk_embeddings)[0] end_time = timer() st.write(f"Time taken to compute scores: {end_time - start_time:.5f} seconds") # Get top results top_k = st.slider("Select number of top results to display", min_value=1, max_value=10, value=5) top_results_dot_product = t.topk(dot_scores, k=top_k) st.subheader("Query Results") st.write(f"Query: {query}") for score, idx in zip(top_results_dot_product[0], top_results_dot_product[1]): st.write(f"### Score: {score:.4f}") st.write(f"**Text:** {df.iloc[int(idx)]['ext']}") st.write(f"**Number of tokens:** {df.iloc[int(idx)]['tokens']}") st.write("---") if __name__ == "__main__": main()