File size: 7,959 Bytes
a087ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import logging
import math
from collections import OrderedDict

import mmcv
import numpy as np
import torch
from torchvision.utils import save_image

from models.archs.fcn_arch import FCNHead
from models.archs.shape_attr_embedding_arch import ShapeAttrEmbedding
from models.archs.unet_arch import ShapeUNet
from models.losses.accuracy import accuracy
from models.losses.cross_entropy_loss import CrossEntropyLoss

logger = logging.getLogger('base')


class ParsingGenModel():
    """Paring Generation model.
    """

    def __init__(self, opt):
        self.opt = opt
        self.device = torch.device('cuda')
        self.is_train = opt['is_train']

        self.attr_embedder = ShapeAttrEmbedding(
            dim=opt['embedder_dim'],
            out_dim=opt['embedder_out_dim'],
            cls_num_list=opt['attr_class_num']).to(self.device)
        self.parsing_encoder = ShapeUNet(
            in_channels=opt['encoder_in_channels']).to(self.device)
        self.parsing_decoder = FCNHead(
            in_channels=opt['fc_in_channels'],
            in_index=opt['fc_in_index'],
            channels=opt['fc_channels'],
            num_convs=opt['fc_num_convs'],
            concat_input=opt['fc_concat_input'],
            dropout_ratio=opt['fc_dropout_ratio'],
            num_classes=opt['fc_num_classes'],
            align_corners=opt['fc_align_corners'],
        ).to(self.device)

        self.init_training_settings()

        self.palette = [[0, 0, 0], [255, 250, 250], [220, 220, 220],
                        [250, 235, 215], [255, 250, 205], [211, 211, 211],
                        [70, 130, 180], [127, 255, 212], [0, 100, 0],
                        [50, 205, 50], [255, 255, 0], [245, 222, 179],
                        [255, 140, 0], [255, 0, 0], [16, 78, 139],
                        [144, 238, 144], [50, 205, 174], [50, 155, 250],
                        [160, 140, 88], [213, 140, 88], [90, 140, 90],
                        [185, 210, 205], [130, 165, 180], [225, 141, 151]]

    def init_training_settings(self):
        optim_params = []
        for v in self.attr_embedder.parameters():
            if v.requires_grad:
                optim_params.append(v)
        for v in self.parsing_encoder.parameters():
            if v.requires_grad:
                optim_params.append(v)
        for v in self.parsing_decoder.parameters():
            if v.requires_grad:
                optim_params.append(v)
        # set up optimizers
        self.optimizer = torch.optim.Adam(
            optim_params,
            self.opt['lr'],
            weight_decay=self.opt['weight_decay'])
        self.log_dict = OrderedDict()
        self.entropy_loss = CrossEntropyLoss().to(self.device)

    def feed_data(self, data):
        self.pose = data['densepose'].to(self.device)
        self.attr = data['attr'].to(self.device)
        self.segm = data['segm'].to(self.device)

    def optimize_parameters(self):
        self.attr_embedder.train()
        self.parsing_encoder.train()
        self.parsing_decoder.train()

        self.attr_embedding = self.attr_embedder(self.attr)
        self.pose_enc = self.parsing_encoder(self.pose, self.attr_embedding)
        self.seg_logits = self.parsing_decoder(self.pose_enc)

        loss = self.entropy_loss(self.seg_logits, self.segm)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        self.log_dict['loss_total'] = loss

    def get_vis(self, save_path):
        img_cat = torch.cat([
            self.pose,
            self.segm,
        ], dim=3).detach()
        img_cat = ((img_cat + 1) / 2)

        img_cat = img_cat.clamp_(0, 1)

        save_image(img_cat, save_path, nrow=1, padding=4)

    def inference(self, data_loader, save_dir):
        self.attr_embedder.eval()
        self.parsing_encoder.eval()
        self.parsing_decoder.eval()

        acc = 0
        num = 0

        for _, data in enumerate(data_loader):
            pose = data['densepose'].to(self.device)
            attr = data['attr'].to(self.device)
            segm = data['segm'].to(self.device)
            img_name = data['img_name']

            num += pose.size(0)
            with torch.no_grad():
                attr_embedding = self.attr_embedder(attr)
                pose_enc = self.parsing_encoder(pose, attr_embedding)
                seg_logits = self.parsing_decoder(pose_enc)
            seg_pred = seg_logits.argmax(dim=1)
            acc += accuracy(seg_logits, segm)
            palette_label = self.palette_result(segm.cpu().numpy())
            palette_pred = self.palette_result(seg_pred.cpu().numpy())
            pose_numpy = ((pose[0] + 1) / 2. * 255.).expand(
                3,
                pose[0].size(1),
                pose[0].size(2),
            ).cpu().numpy().clip(0, 255).astype(np.uint8).transpose(1, 2, 0)
            concat_result = np.concatenate(
                (pose_numpy, palette_pred, palette_label), axis=1)
            mmcv.imwrite(concat_result, f'{save_dir}/{img_name[0]}')

        self.attr_embedder.train()
        self.parsing_encoder.train()
        self.parsing_decoder.train()
        return (acc / num).item()

    def get_current_log(self):
        return self.log_dict

    def update_learning_rate(self, epoch):
        """Update learning rate.

        Args:
            current_iter (int): Current iteration.
            warmup_iter (int): Warmup iter numbers. -1 for no warmup.
                Default: -1.
        """
        lr = self.optimizer.param_groups[0]['lr']

        if self.opt['lr_decay'] == 'step':
            lr = self.opt['lr'] * (
                self.opt['gamma']**(epoch // self.opt['step']))
        elif self.opt['lr_decay'] == 'cos':
            lr = self.opt['lr'] * (
                1 + math.cos(math.pi * epoch / self.opt['num_epochs'])) / 2
        elif self.opt['lr_decay'] == 'linear':
            lr = self.opt['lr'] * (1 - epoch / self.opt['num_epochs'])
        elif self.opt['lr_decay'] == 'linear2exp':
            if epoch < self.opt['turning_point'] + 1:
                # learning rate decay as 95%
                # at the turning point (1 / 95% = 1.0526)
                lr = self.opt['lr'] * (
                    1 - epoch / int(self.opt['turning_point'] * 1.0526))
            else:
                lr *= self.opt['gamma']
        elif self.opt['lr_decay'] == 'schedule':
            if epoch in self.opt['schedule']:
                lr *= self.opt['gamma']
        else:
            raise ValueError('Unknown lr mode {}'.format(self.opt['lr_decay']))
        # set learning rate
        for param_group in self.optimizer.param_groups:
            param_group['lr'] = lr

        return lr

    def save_network(self, save_path):
        """Save networks.
        """

        save_dict = {}
        save_dict['embedder'] = self.attr_embedder.state_dict()
        save_dict['encoder'] = self.parsing_encoder.state_dict()
        save_dict['decoder'] = self.parsing_decoder.state_dict()

        torch.save(save_dict, save_path)

    def load_network(self):
        checkpoint = torch.load(self.opt['pretrained_parsing_gen'])

        self.attr_embedder.load_state_dict(checkpoint['embedder'], strict=True)
        self.attr_embedder.eval()

        self.parsing_encoder.load_state_dict(
            checkpoint['encoder'], strict=True)
        self.parsing_encoder.eval()

        self.parsing_decoder.load_state_dict(
            checkpoint['decoder'], strict=True)
        self.parsing_decoder.eval()

    def palette_result(self, result):
        seg = result[0]
        palette = np.array(self.palette)
        assert palette.shape[1] == 3
        assert len(palette.shape) == 2
        color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
        for label, color in enumerate(palette):
            color_seg[seg == label, :] = color
        # convert to BGR
        color_seg = color_seg[..., ::-1]
        return color_seg