H2OTest / llm_studio /src /models /text_causal_classification_modeling_model.py
elineve's picture
Upload 301 files
07423df
import logging
from typing import Any, Dict
from torch import nn
from transformers import AutoModelForCausalLM
from llm_studio.src.utils.data_utils import batch_padding
from llm_studio.src.utils.modeling_utils import create_nlp_backbone, prepare_lora
logger = logging.getLogger(__name__)
class Model(nn.Module):
"""
Model for causal language modeling problem type.
"""
def __init__(self, cfg: Any):
"""
Args:
cfg: config with all the hyperparameters
"""
super(Model, self).__init__()
self.cfg = cfg
self.backbone, self.backbone_config = create_nlp_backbone(
cfg, model_class=AutoModelForCausalLM
)
if cfg.training.lora:
self.backbone = prepare_lora(cfg, self.backbone)
self.classification_head = nn.Linear(
self.backbone_config.vocab_size, cfg.dataset.num_classes, bias=False
)
self.loss_fn = self.cfg.training.loss_class.get(
self.cfg.training.loss_function
)(self.cfg)
def forward(
self,
batch: Dict,
padding: bool = True,
) -> Dict:
# disable cache if gradient checkpointing is enabled
if self.cfg.architecture.gradient_checkpointing:
self.backbone.config.use_cache = False
outputs: Dict = {}
mask_key = "prompt_attention_mask"
pad_keys = [
"prompt_input_ids",
"prompt_attention_mask",
"special_tokens_mask",
"labels",
]
if padding:
batch = batch_padding(
self.cfg,
batch,
self.training,
mask_key=mask_key,
pad_keys=pad_keys,
padding_side=self.cfg.tokenizer._padding_side,
)
output = self.backbone(
input_ids=batch["prompt_input_ids"],
attention_mask=batch["prompt_attention_mask"],
)
output.logits = self.classification_head(output[0][:, -1].float())
if "labels" in batch:
loss = self.loss_fn(
output.logits, batch["class_label"].unsqueeze(1).float()
)
outputs["loss"] = loss
outputs["logits"] = output.logits
# enable cache again if gradient checkpointing is enabled
if self.cfg.architecture.gradient_checkpointing:
self.backbone.config.use_cache = True
return outputs