|
import logging |
|
from typing import Any, Dict |
|
|
|
import torch |
|
from torch import nn |
|
from transformers import AutoModelForCausalLM |
|
|
|
from llm_studio.src.metrics.text_causal_language_modeling_metrics import Perplexity |
|
from llm_studio.src.utils.data_utils import batch_padding |
|
from llm_studio.src.utils.modeling_utils import ( |
|
create_nlp_backbone, |
|
generate, |
|
prepare_lora, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class ValueHead(nn.Module): |
|
""" |
|
The ValueHead class implements a head for GPT2 that returns a scalar for each |
|
output token. |
|
|
|
Based on the implementation of trl library: |
|
https://github.com/lvwerra/trl/blob/main/trl/models/modeling_value_head.py |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
if not hasattr(config, "summary_dropout_prob"): |
|
summary_dropout_prob = 0.1 |
|
else: |
|
summary_dropout_prob = config.summary_dropout_prob |
|
|
|
self.dropout = ( |
|
nn.Dropout(summary_dropout_prob) if summary_dropout_prob else nn.Identity() |
|
) |
|
|
|
|
|
|
|
if hasattr(config, "word_embed_proj_dim"): |
|
hidden_size = config.word_embed_proj_dim |
|
else: |
|
hidden_size = config.hidden_size |
|
|
|
self.summary = nn.Linear(hidden_size, 1) |
|
|
|
def forward(self, hidden_states): |
|
output = self.dropout(hidden_states) |
|
|
|
|
|
|
|
if output.dtype != self.summary.weight.dtype: |
|
output = output.to(self.summary.weight.dtype) |
|
|
|
output = self.summary(output) |
|
return output |
|
|
|
|
|
class Model(nn.Module): |
|
""" |
|
Model for causal language modeling problem type. |
|
""" |
|
|
|
def __init__(self, cfg: Any): |
|
""" |
|
Args: |
|
cfg: config with all the hyperparameters |
|
""" |
|
|
|
super(Model, self).__init__() |
|
|
|
self.cfg = cfg |
|
assert cfg.training.lora, "LoRA must be True for RLHF" |
|
|
|
self.backbone, self.backbone_config = create_nlp_backbone( |
|
cfg, model_class=AutoModelForCausalLM |
|
) |
|
|
|
self.backbone = prepare_lora(cfg=self.cfg, backbone=self.backbone) |
|
|
|
if self.cfg.prediction.metric == "Perplexity": |
|
self.perplexity = Perplexity(self.cfg, reduce=False) |
|
|
|
self.value_head = ValueHead(self.backbone_config) |
|
self.value_head.summary.bias.data.zero_() |
|
|
|
def forward( |
|
self, |
|
batch: Dict, |
|
padding: bool = True, |
|
) -> Dict: |
|
|
|
if self.cfg.architecture.gradient_checkpointing: |
|
self.backbone.config.use_cache = False |
|
|
|
outputs: Dict = {} |
|
mask_key = "attention_mask" |
|
pad_keys = [ |
|
"input_ids", |
|
"attention_mask", |
|
"special_tokens_mask", |
|
"labels", |
|
] |
|
|
|
if padding: |
|
batch = batch_padding( |
|
self.cfg, |
|
batch, |
|
self.training, |
|
mask_key=mask_key, |
|
pad_keys=pad_keys, |
|
) |
|
|
|
output = self.backbone( |
|
input_ids=batch["input_ids"], |
|
attention_mask=batch["attention_mask"], |
|
output_hidden_states=True, |
|
) |
|
|
|
if self.cfg.prediction.metric == "Perplexity" and not self.training: |
|
outputs["perplexity"] = self.perplexity(output.logits, batch["labels"]) |
|
|
|
if self.training: |
|
last_hidden_state = output.hidden_states[-1] |
|
|
|
|
|
if output.logits.dtype != torch.float32: |
|
output.logits = output.logits.float() |
|
|
|
outputs["logits"] = output.logits |
|
outputs["value"] = self.value_head(last_hidden_state).squeeze(-1) |
|
|
|
|
|
if self.cfg.architecture.gradient_checkpointing: |
|
self.backbone.config.use_cache = True |
|
|
|
return outputs |
|
|
|
def generate(self, batch: Dict, cfg: Any, streamer=None): |
|
return generate(self.backbone, batch, cfg, streamer) |
|
|