H2OTest / llm_studio /src /utils /modeling_utils.py
elineve's picture
Upload 301 files
07423df
import gc
import logging
import os
import re
import shutil
from collections import OrderedDict
from typing import Any, Dict
import coolname
import deepspeed
import numpy as np
import torch
import transformers
from deepspeed.runtime.dataloader import DeepSpeedDataLoader
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
from peft import LoraConfig, PeftModel, get_peft_model
from torch.cuda.amp import autocast
from torch.nn.parallel import DistributedDataParallel
from tqdm import tqdm
from transformers import (
AutoConfig,
AutoModel,
BitsAndBytesConfig,
GenerationMixin,
StoppingCriteria,
StoppingCriteriaList,
)
from transformers.pytorch_utils import Conv1D as Conv1DTransformer
from transformers.utils import logging as transformers_logging
from llm_studio.src.datasets.text_utils import get_tokenizer
from llm_studio.src.optimizers import Optimizers
from llm_studio.src.schedulers import Schedulers
from llm_studio.src.utils.config_utils import NON_GENERATION_PROBLEM_TYPES
from llm_studio.src.utils.data_utils import (
OrderedDistributedSampler,
batch_padding,
cat_batches,
get_inference_batch_size,
)
from llm_studio.src.utils.exceptions import LLMDataException, LLMModelException
from llm_studio.src.utils.logging_utils import TqdmToLogger
from llm_studio.src.utils.utils import save_pickle
logger = logging.getLogger(__name__)
def unwrap_model(model: torch.nn.Module):
options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
while isinstance(model, options):
model = model.module
return model
def check_disk_space(model: torch.nn.Module, path: str):
total, used, free = shutil.disk_usage(path)
model_size_in_bytes = 0
for param in model.parameters():
n_params = param.ds_numel if hasattr(param, "ds_numel") else param.numel()
if param.data.dtype in [torch.int8, torch.uint8]:
model_size_in_bytes += n_params * 1
elif param.data.dtype in [torch.float16, torch.bfloat16]:
model_size_in_bytes += n_params * 2
elif param.data.dtype == torch.float32:
model_size_in_bytes += n_params * 4
else:
# If the data type is not supported, calculate it as float32.
model_size_in_bytes += n_params * 4
logger.warning(f"Unsupported data type: {param.data.dtype}")
if model_size_in_bytes * 1.03 < free: # leave a 3% margin here.
logger.info(
"Enough space available for saving model weights."
f"Required space: {model_size_in_bytes * 1.03 / (1024 * 1024):.2f}MB, "
f"Available space: {free / (1024 * 1024):.2f}MB."
)
else:
raise ValueError(
f"Not enough space available for saving model weights. "
f"Required space: {model_size_in_bytes * 1.03 / (1024 * 1024):.2f}MB, "
f"Available space: {free / (1024 * 1024):.2f}MB."
)
# TODO: currently not saving optimizer
def save_checkpoint(model: torch.nn.Module, path: str, cfg: Any):
"""Saves a model checkpoint if the path is provided.
Args:
model: model to save
path: path to save the checkpoint to
Returns:
Dictionary with all the keys to save
"""
if cfg.environment.use_deepspeed:
if path is not None:
# gather model params from all ranks when using Deepspeed
status = model.save_16bit_model(path, "checkpoint.pth") # type: ignore
if status:
if cfg.environment._local_rank == 0:
checkpoint = {
"model": torch.load(
os.path.join(path, "checkpoint.pth"), map_location="cpu"
)
}
else:
logger.warning(
"deepspeed.save_16bit_model didn't save the model, since"
" stage3_gather_16bit_weights_on_model_save=False."
" Saving the full checkpoint instead"
)
model.save_checkpoint( # type: ignore
os.path.join(path, "ds_checkpoint")
)
if cfg.environment._local_rank == 0:
# load to cpu
state_dict = get_fp32_state_dict_from_zero_checkpoint(
os.path.join(path, "ds_checkpoint")
)
# save as normal checkpoint that can be loaded by `load_state_dict`
checkpoint = {"model": state_dict}
torch.save(checkpoint, os.path.join(path, "checkpoint.pth"))
shutil.rmtree(os.path.join(path, "ds_checkpoint"))
else:
if cfg.environment._local_rank == 0:
model = unwrap_model(model)
checkpoint = {"model": model.state_dict()}
if path is not None:
torch.save(checkpoint, os.path.join(path, "checkpoint.pth"))
if (
cfg.environment._local_rank == 0
and "classification_head.weight" in checkpoint["model"]
):
torch.save(
checkpoint["model"]["classification_head.weight"],
os.path.join(path, "classification_head.pth"),
)
def load_model_weights(
model: torch.nn.Module, model_weights: Dict, strict: bool, cfg: Any
):
orig_num_items = len(model_weights)
model_state_dict = model.state_dict()
# needed to load models trained in int4/int8 with other dtypes
model_weights = {
k: (
v
if not (
cfg.architecture.backbone_dtype not in ("int4", "int8")
and (v.dtype is torch.int8 or v.dtype is torch.uint8)
)
else model_state_dict[k]
)
for k, v in model_weights.items()
if not (
("SCB" in k or "weight_format" in k or "quant_state" in k)
and cfg.architecture.backbone_dtype not in ("int4", "int8")
)
}
# Need to ignore int4/int8 weights so undo strict loading requirement
if len(model_weights) != orig_num_items:
strict = False
model_weights = {re.sub(r"^module\.", "", k): v for k, v in model_weights.items()}
model_weights = {k.replace("_orig_mod.", ""): v for k, v in model_weights.items()}
# manual fix for int8 weights
if cfg.architecture.backbone_dtype == "int8":
model_weights = {
k: v.to(cfg.environment._device) if "weight_format" not in k else v
for k, v in model_weights.items()
}
try:
model.load_state_dict(OrderedDict(model_weights), strict=True)
except Exception as e:
if strict:
raise e
else:
if cfg.environment._local_rank == 0:
logger.warning(
"Only a part of the pretrained weights was loaded. "
"Some layers can't be initialized with pretrained "
f"weights: {e}"
)
for layer_name in re.findall("size mismatch for (.*?):", str(e)):
model_weights.pop(layer_name, None)
model.load_state_dict(OrderedDict(model_weights), strict=False)
return model
def load_checkpoint(
cfg: Any, model: torch.nn.Module, strict: bool = True, weights_path: str = None
):
"""Load checkpoint
Args:
cfg: config file
model: model to load weights to
strict: whether to apply strict matching for weights
weights_path: custom path to the weights.
If None, cfg.architecture.pretrained_weights is used
Returns:
epoch: current epoch
"""
if weights_path is None:
weights_path = cfg.architecture.pretrained_weights
model_weights = torch.load(weights_path, map_location="cpu")
if "model" in model_weights.keys():
model_weights = model_weights["model"]
if cfg.environment.use_deepspeed:
if cfg.training.lora:
model.backbone.base_model.model = load_model_weights( # type: ignore
model.backbone.base_model.model, # type: ignore
model_weights,
strict,
cfg,
)
else:
model.backbone = load_model_weights(
model.backbone, model_weights, strict, cfg # type: ignore
)
else:
model = load_model_weights(model, model_weights, strict, cfg)
del model_weights
gc.collect()
if cfg.environment._local_rank == 0:
logger.info(f"Weights loaded from: {weights_path}")
def get_ds_config(cfg: Any):
ds_config = {
"fp16": {
"enabled": True if cfg.architecture.backbone_dtype == "float16" else False,
"loss_scale_window": 100,
},
"bf16": {
"enabled": True if cfg.architecture.backbone_dtype == "bfloat16" else False,
"loss_scale_window": 100,
},
# https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training
"zero_force_ds_cpu_optimizer": False,
"zero_optimization": {
"overlap_comm": True,
"contiguous_gradients": True,
"reduce_bucket_size": cfg.environment.deepspeed_reduce_bucket_size,
# zero3 offload cpu
# "stage3_max_live_parameters": cfg.environment.deepspeed_stage3_max_live_parameters, # noqa: E501
# "stage3_max_reuse_distance": cfg.environment.deepspeed_stage3_max_reuse_distance, # noqa: E501
# zero++
# "reduce_scatter": True,
# "zero_quantized_weights": True,
# "zero_hpz_partition_size": 16,
# "zero_quantized_gradients": True,
},
"steps_per_print": 2000,
"train_micro_batch_size_per_gpu": cfg.training.batch_size,
"gradient_accumulation_steps": cfg.training.grad_accumulation,
"wall_clock_breakdown": False,
}
if cfg.environment.deepspeed_method == "ZeRO2":
ds_config["zero_optimization"]["stage"] = 2
ds_config["zero_optimization"]["allgather_partitions"] = True
ds_config["zero_optimization"][
"allgather_bucket_size"
] = cfg.environment.deepspeed_allgather_bucket_size
elif cfg.environment.deepspeed_method == "ZeRO3":
ds_config["zero_optimization"]["stage"] = 3
ds_config["zero_optimization"][
"stage3_prefetch_bucket_size"
] = cfg.environment.deepspeed_stage3_prefetch_bucket_size
ds_config["zero_optimization"][
"stage3_param_persistence_threshold"
] = cfg.environment.deepspeed_stage3_param_persistence_threshold
ds_config["zero_optimization"][
"stage3_gather_16bit_weights_on_model_save"
] = True
# TODO: Do not enable offload cpu for now.
# if cfg.environment.deepspeed_offload_optimizer:
# ds_config["zero_optimization"]["offload_optimizer"] = {
# "device": "cpu",
# "pin_memory": True,
# }
# TODO: RuntimeError: Tensors must be CUDA and dense
# if cfg.environment.deepspeed_offload_param:
# ds_config["zero_optimization"]["offload_param"] =
# {"device": "cpu", "pin_memory": True}
logger.info(f"DeepSpeed config: {ds_config}")
return ds_config
def wrap_model_distributed(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
lr_scheduler: torch.optim.lr_scheduler._LRScheduler,
train_dataloader: torch.utils.data.DataLoader,
val_dataloader: torch.utils.data.DataLoader,
cfg: Any,
):
if cfg.environment.use_deepspeed:
ds_config = get_ds_config(cfg)
if not cfg.training.lora:
ds_engine, optimizer, train_dataloader, lr_scheduler = deepspeed.initialize(
model=model.backbone,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
training_data=train_dataloader.dataset,
config_params=ds_config,
)
model.backbone = ds_engine
else:
ds_engine, optimizer, train_dataloader, lr_scheduler = deepspeed.initialize(
model=model.backbone.base_model.model, # type: ignore
optimizer=optimizer,
lr_scheduler=lr_scheduler,
training_data=train_dataloader.dataset,
config_params=ds_config,
)
model.backbone.base_model.model = ds_engine # type: ignore
model.init_deepspeed() # type: ignore
val_dataloader = DeepSpeedDataLoader(
val_dataloader.dataset,
batch_size=val_dataloader.batch_size,
local_rank=cfg.environment._local_rank,
pin_memory=True,
tput_timer=None,
data_sampler=OrderedDistributedSampler(
val_dataloader.dataset,
num_replicas=cfg.environment._world_size,
rank=cfg.environment._local_rank,
),
)
else:
find_unused_parameters = cfg.environment.find_unused_parameters
if getattr(cfg.architecture, "gradient_checkpointing", None):
find_unused_parameters = False
model = DistributedDataParallel(
model,
device_ids=[cfg.environment._local_rank],
find_unused_parameters=find_unused_parameters,
)
return model, optimizer, train_dataloader, val_dataloader, lr_scheduler
def get_optimizer(model: torch.nn.Module, cfg: Any) -> torch.optim.Optimizer:
"""Prepares Optimizer.
Args:
model: model
cfg: input config
Returns:
Optimizer
"""
no_decay = ["bias", "LayerNorm.weight"]
differential_layers = cfg.training.differential_learning_rate_layers
optimizer = Optimizers.get(cfg.training.optimizer)(
[
{
"params": [
param
for name, param in model.named_parameters()
if (not any(layer in name for layer in differential_layers))
and (not any(nd in name for nd in no_decay))
and param.requires_grad
],
"lr": cfg.training.learning_rate,
"weight_decay": cfg.training.weight_decay,
},
{
"params": [
param
for name, param in model.named_parameters()
if (not any(layer in name for layer in differential_layers))
and (any(nd in name for nd in no_decay))
and param.requires_grad
],
"lr": cfg.training.learning_rate,
"weight_decay": 0,
},
{
"params": [
param
for name, param in model.named_parameters()
if (any(layer in name for layer in differential_layers))
and (not any(nd in name for nd in no_decay))
and param.requires_grad
],
"lr": cfg.training.differential_learning_rate,
"weight_decay": cfg.training.weight_decay,
},
{
"params": [
param
for name, param in model.named_parameters()
if (any(layer in name for layer in differential_layers))
and (any(nd in name for nd in no_decay))
and param.requires_grad
],
"lr": cfg.training.differential_learning_rate,
"weight_decay": 0,
},
],
lr=cfg.training.learning_rate,
weight_decay=cfg.training.weight_decay,
)
return optimizer
def get_scheduler(
cfg: Any, optimizer: torch.optim.Optimizer, epoch_steps: int
) -> torch.optim.lr_scheduler._LRScheduler:
"""Prepares Learning Rate Scheduler.
Args:
cfg: input config
optimizer: model optimizer
epoch_steps: total number of weight updates during the epoch
Returns:
Learning Rate Scheduler
"""
scheduler = Schedulers.get(cfg.training.schedule)(
optimizer=optimizer,
num_warmup_steps=cfg.training.warmup_epochs * epoch_steps,
num_training_steps=cfg.training.epochs * epoch_steps,
)
return scheduler
def generate_experiment_name() -> str:
"""
Generates a random human-readable experiment name in kebab-case.
Returns:
The random name.
"""
return coolname.generate_slug(2)
def reduce_metric(output, reduce=None) -> float:
"""Reduces metric and return metric score (number)
Args:
output: output of the model
reduce: how to reduce the metric over the sample dimension
Returns:
score: single number score (using config threshold for threshold metrics)
or non-reduced array of scores per sample.
"""
if reduce == "mean":
score = np.mean(output["metrics"])
else:
raise NotImplementedError()
return score
def get_number_of_validation_epochs(training_epochs: int, evaluation_epochs: float):
"""
Given the number of training epochs and the number of epochs between model
evaluations, return the number of times the model is being evaluated during
training
Args:
training_epochs: The number of epochs to train for
evaluation_epochs: This is the number of epochs after which we want to
evaluate our model
Returns:
num_val_epochs: The number of epochs to be evaluated during training.
"""
return training_epochs // evaluation_epochs
def contains_nan(output: Dict):
return (
sum(
[
1
for key, val in output.items()
if isinstance(val, torch.Tensor)
and torch.isnan(val.detach().cpu()).sum() > 0
]
)
> 0
)
def run_inference(
cfg: Any,
model: torch.nn.Module,
dataloader,
mode: str,
) -> Dict[str, list]:
"""Runs inference
Args:
cfg: config
model: model
dataloader: custom dataloader
mode: mode for inference
Returns:
Dictionary with output
"""
# Store information for evaluation
out = dict()
if cfg.environment._local_rank == 0:
logger.info(f"Starting {mode} inference")
tqdm_out = TqdmToLogger(logger, level=logging.INFO)
progress_bar = tqdm(
total=len(dataloader),
disable=cfg.environment._local_rank != 0,
file=tqdm_out,
ascii=True,
desc=f"{mode} progress",
mininterval=0,
)
log_update_steps = max(len(dataloader) // 20, 1)
inf_it = iter(dataloader)
for itr in range(len(dataloader)):
try:
data = next(inf_it)
except Exception:
raise LLMDataException("Data reading error. Skipping inference.")
val_batch_size = get_inference_batch_size(cfg)
cfg.environment._curr_val_step += val_batch_size * cfg.environment._world_size
batch = cfg.dataset.dataset_class.batch_to_device(data, cfg.environment._device)
if cfg.environment.use_deepspeed:
if (
cfg.prediction.metric != "Perplexity"
and cfg.problem_type not in NON_GENERATION_PROBLEM_TYPES
):
output = {}
output["predicted_answer_ids"] = (
model.generate(batch, cfg).detach().cpu() # type: ignore
)
else:
output = model.forward(batch)
else:
with autocast(
enabled=cfg.environment.mixed_precision,
dtype=get_torch_dtype(cfg.environment.mixed_precision_dtype),
):
if (
cfg.prediction.metric != "Perplexity"
and cfg.problem_type not in NON_GENERATION_PROBLEM_TYPES
):
output = {}
output["predicted_answer_ids"] = (
unwrap_model(model).generate(batch, cfg).detach().cpu()
)
else:
output = model.forward(batch)
if contains_nan(output) and cfg.environment.mixed_precision:
raise LLMModelException(
"NaN caught during mixed precision inference. "
"Please disable mixed precision inference. "
"Alternatively, reducing learning rate or "
"gradient clipping may help to stabilize training."
)
output = dataloader.dataset.postprocess_batch_predictions(output=output)
if "predicted_answer_ids" in output.keys():
del output["predicted_answer_ids"]
for key, val in output.items():
if isinstance(val, torch.Tensor):
val = val.detach().cpu()
# DefaultDict is not used as it adds extra keys during pickle.dump
if key not in out:
out[key] = [val]
else:
out[key] += [val]
if cfg.environment._local_rank == 0:
# Show logs each 5% of the inference
if (itr + 1) % log_update_steps == 0 or itr == len(dataloader) - 1:
progress_bar.set_description(f"{mode} progress", refresh=False)
if (itr + 1) % log_update_steps == 0:
progress_bar.update(log_update_steps)
else:
progress_bar.update(len(dataloader) % log_update_steps)
cfg.logging._logger.log(
"internal",
"current_val_step",
cfg.environment._curr_val_step,
step=cfg.environment._curr_val_step,
)
if cfg.environment._distributed:
torch.distributed.barrier()
progress_bar.close()
del progress_bar
out = cat_batches(out)
return out
def save_predictions(cfg, val_data, val_dataloader, val_df, mode):
val_data, val_df = val_dataloader.dataset.format_output( # type: ignore
cfg=cfg, df=val_df, output=val_data
)
raw_preds_name = os.path.join(cfg.output_directory, f"{mode}_raw_predictions.pkl")
csv_preds_name = os.path.join(cfg.output_directory, f"{mode}_predictions.csv")
save_pickle(raw_preds_name, val_data)
val_df.to_csv(csv_preds_name, index=False)
def update_backbone_config(config: Any, cfg: Any):
if hasattr(config, "hidden_dropout_prob"):
config.hidden_dropout_prob = cfg.architecture.intermediate_dropout
if hasattr(config, "attention_probs_dropout_prob"):
config.attention_probs_dropout_prob = cfg.architecture.intermediate_dropout
if (
not hasattr(config, "hidden_dropout_prob")
and not hasattr(config, "attention_probs_dropout_prob")
and cfg.architecture.intermediate_dropout > 0
):
logger.warning(
"Model config does not have dropout attributes. "
f"Ignoring Intermediate Dropout = {cfg.architecture.intermediate_dropout}."
)
cfg.architecture.intermediate_dropout = 0
tokenizer = get_tokenizer(cfg)
if config.eos_token_id != tokenizer.eos_token_id:
logger.warning(
"EOS token id not matching between config and tokenizer. "
"Overwriting with tokenizer id."
)
config.eos_token_id = tokenizer.eos_token_id
if config.pad_token_id != tokenizer.pad_token_id:
logger.warning(
"PAD token id not matching between config and tokenizer. "
"Overwriting with tokenizer id."
)
config.pad_token_id = tokenizer.pad_token_id
# no warning needed as not used
if config.bos_token_id != tokenizer.bos_token_id:
config.bos_token_id = tokenizer.bos_token_id
if "mpt-" in cfg.llm_backbone:
config.init_device = cfg.environment._device
# See: https://github.com/huggingface/transformers/pull/24906
if hasattr(config, "pretraining_tp") and cfg.training.lora:
logger.info("Setting pretraining_tp of model config to 1.")
config.pretraining_tp = 1
return config
def set_generation_config(backbone: torch.nn.Module, cfg_prediction: Any):
backbone.generation_config.min_new_tokens = cfg_prediction.min_length_inference
backbone.generation_config.max_new_tokens = cfg_prediction.max_length_inference
backbone.generation_config.max_time = (
cfg_prediction.max_time if cfg_prediction.max_time > 0 else None
)
backbone.generation_config.do_sample = cfg_prediction.do_sample
backbone.generation_config.num_beams = cfg_prediction.num_beams
backbone.generation_config.repetition_penalty = cfg_prediction.repetition_penalty
if cfg_prediction.do_sample:
backbone.generation_config.temperature = cfg_prediction.temperature
backbone.generation_config.top_k = cfg_prediction.top_k
backbone.generation_config.top_p = cfg_prediction.top_p
backbone.generation_config.transformers_version = transformers.__version__
return backbone
def create_nlp_backbone(cfg, model_class=AutoModel) -> Any:
"""
Creates a backbone model for NLP tasks.
This is needed for Gradient Checkpointing in DDP mode.
"""
kwargs = dict()
try:
config = AutoConfig.from_pretrained(
cfg.llm_backbone,
trust_remote_code=cfg.environment.trust_remote_code,
token=os.getenv("HUGGINGFACE_TOKEN"),
revision=cfg.environment.huggingface_branch,
)
kwargs["token"] = os.getenv("HUGGINGFACE_TOKEN")
except TypeError:
# TypeError: RWForCausalLM.__init__() got
# an unexpected keyword argument 'token'
config = AutoConfig.from_pretrained(
cfg.llm_backbone,
trust_remote_code=cfg.environment.trust_remote_code,
revision=cfg.environment.huggingface_branch,
)
config = update_backbone_config(config, cfg)
quantization_config = None
if cfg.architecture.backbone_dtype == "int8" and len(cfg.environment.gpus):
kwargs["device_map"] = {"": cfg.environment._device} # type: ignore
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=0.0,
)
# need to force pretrained
cfg.architecture.pretrained = True
kwargs["torch_dtype"] = torch.float16 # type: ignore
elif cfg.architecture.backbone_dtype == "int4" and len(cfg.environment.gpus):
kwargs["device_map"] = {"": cfg.environment._device} # type: ignore
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
)
# need to force pretrained
cfg.architecture.pretrained = True
kwargs["torch_dtype"] = torch.float16 # type: ignore
elif len(cfg.environment.gpus) == 0 and cfg.architecture.backbone_dtype in [
"int4",
"int8",
]:
logger.warning(
"Quantization is not supported on CPU. "
"Please run on GPU or disable quantization."
)
cfg.architecture.backbone_dtype = "float32"
else:
kwargs["torch_dtype"] = getattr(torch, cfg.architecture.backbone_dtype)
logger.info(f"Using {cfg.architecture.backbone_dtype} for backbone")
kwargs["trust_remote_code"] = cfg.environment.trust_remote_code
if cfg.training.use_flash_attention_2:
try:
import flash_attn # noqa: F401
# see https://github.com/fxmarty/transformers/
# blob/3f06a3a0aec8cc1ec3ad6bf66ebe277392c5ab37/
# src/transformers/configuration_utils.py#L380
config._attn_implementation_internal = "flash_attention_2"
if cfg.environment._local_rank == 0:
logger.info("Using Flash Attention 2.")
except ImportError:
if cfg.environment._local_rank == 0:
logger.warning(
"Flash Attention 2.0 is not available. "
"Please consider to run 'make setup' to install it."
)
if cfg.architecture.pretrained:
if cfg.environment._local_rank == 0:
logger.info(f"Loading {cfg.llm_backbone}. This may take a while.")
backbone = model_class.from_pretrained(
cfg.llm_backbone,
revision=cfg.environment.huggingface_branch,
config=config,
quantization_config=quantization_config,
**kwargs,
)
if cfg.environment._local_rank == 0:
logger.info(f"Loaded {cfg.llm_backbone}.")
else:
kwargs.pop("token", None)
backbone = model_class.from_config(config, **kwargs)
if cfg.tokenizer._vocab_length > config.vocab_size:
if cfg.environment._local_rank == 0:
logger.info(f"Resizing token embeddings to {cfg.tokenizer._vocab_length}")
backbone.resize_token_embeddings(cfg.tokenizer._vocab_length)
backbone.model_parallel = False
if cfg.training.lora:
# if used, gradient checkpointing will be enabled below
loaded_in_kbit = getattr(backbone, "is_loaded_in_8bit", False) or getattr(
backbone, "is_loaded_in_4bit", False
)
for name, param in backbone.named_parameters():
# freeze base model's layers
param.requires_grad = False
# cast all non INT8 parameters to fp32
if loaded_in_kbit:
for param in backbone.parameters():
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
param.data = param.data.to(torch.float32)
else:
if cfg.architecture.backbone_dtype != "float32":
if cfg.environment.mixed_precision:
logger.info("Disabling mixed precision as dtype not set to float32.")
cfg.environment.mixed_precision = False
if cfg.architecture.backbone_dtype != "bfloat16":
logger.warning(
"Pure float16 or int8 training will "
"likely lead to unstable training without adapters."
)
if cfg.architecture.gradient_checkpointing:
backbone.gradient_checkpointing_enable()
# initialize the generation config
if backbone.generation_config.eos_token_id != config.eos_token_id:
logger.warning(
"EOS token id not matching between generation config and tokenizer. "
"Overwriting with tokenizer id."
)
backbone.generation_config.eos_token_id = config.eos_token_id
if backbone.generation_config.pad_token_id != config.pad_token_id:
logger.warning(
"PAD token id not matching between generation config and tokenizer. "
"Overwriting with tokenizer id."
)
backbone.generation_config.pad_token_id = config.pad_token_id
# no warning needed as not used
if backbone.generation_config.bos_token_id != config.bos_token_id:
backbone.generation_config.bos_token_id = config.bos_token_id
if cfg.problem_type not in NON_GENERATION_PROBLEM_TYPES:
backbone = set_generation_config(backbone, cfg.prediction)
return backbone, config
# Adapted from https://github.com/huggingface/trl/blob/
# 2068fdcd931183b59110aa6dc99d8f5bb55c6f2d/trl/trainer/utils.py#L742
def activate_neftune(model, neftune_noise_alpha):
r"""
Activates the neftune as presented in this code:
https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914
"""
backbone = unwrap_model(model).backbone
if isinstance(backbone, PeftModel):
embeddings = backbone.base_model.get_input_embeddings()
else:
embeddings = backbone.get_input_embeddings()
embeddings.neftune_noise_alpha = neftune_noise_alpha
embeddings.register_forward_hook(neftune_post_forward_hook)
def neftune_post_forward_hook(module, input, output):
"""
Implements the NEFTune forward pass for the model using forward hooks.
Note this works only for torch.nn.Embedding layers.
This method is slightly adapted from the original source code
that can be found here: https://github.com/neelsjain/NEFTune
Simply add it to your model as follows:
```python
model = ...
model.embed_tokens.neftune_noise_alpha = 0.1
model.embed_tokens.register_forward_hook(neftune_post_forward_hook)
```
Args:
module (`torch.nn.Module`):
The embedding module where the hook is attached. Note that you need to set
`module.neftune_noise_alpha` to the desired noise alpha value.
input (`torch.Tensor`):
The input tensor to the model.
output (`torch.Tensor`):
The output tensor of the model (i.e. the embeddings).
"""
if module.training:
dims = torch.tensor(output.size(1) * output.size(2))
mag_norm = module.neftune_noise_alpha / torch.sqrt(dims)
output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm)
return output
class TokenStoppingCriteria(StoppingCriteria):
"""
Stopping criteria based on tokens.
Will stop generation when each generated sample contains at least one of the
stop_word_ids.
"""
def __init__(self, stop_word_ids, prompt_input_ids_len):
super().__init__()
self.prompt_input_ids_len = prompt_input_ids_len
if stop_word_ids is None:
stop_word_ids = []
self.stop_word_ids = stop_word_ids
def should_stop(
self,
generated_ids: torch.Tensor,
stop_word_id: torch.Tensor,
):
if len(stop_word_id.shape) == 0:
return (
torch.mean(((generated_ids == stop_word_id).sum(1) > 0).float()) == 1
).item()
else:
return (
self.get_num_vector_found_in_matrix_rows(stop_word_id, generated_ids)
== generated_ids.shape[0]
)
@staticmethod
def get_num_vector_found_in_matrix_rows(vector, matrix):
"""
Count the number of times a vector is found in a matrix row.
If the vector is found in a row, the search stops and the next row is searched.
"""
assert len(vector.shape) == 1
assert len(matrix.shape) == 2
found = 0
for row in matrix:
# stride through the vector
for i in range(len(row) - len(vector) + 1):
# check if the vector contains the tensor
if torch.all(row[i : i + len(vector)] == vector):
found += 1
break
return found
def __call__(self, input_ids: torch.Tensor, scores: torch.FloatTensor, **kwargs):
generated_ids: torch.Tensor = input_ids[:, self.prompt_input_ids_len :]
for stop_word_id in self.stop_word_ids:
if self.should_stop(generated_ids, stop_word_id.to(generated_ids.device)):
if generated_ids.shape[1] == 1:
logger.warning(
f"Stopping criteria triggered for {stop_word_id} at first "
"generated token."
)
return True
return False
class EnvVariableStoppingCriteria(StoppingCriteria):
"""
Stopping criteria based on env variable.
Useful to force stopping within the app.
"""
stop_streaming_env: str = "STOP_STREAMING"
def __call__(self, input_ids: torch.Tensor, scores: torch.FloatTensor, **kwargs):
should_stop = self.stop_streaming_env in os.environ
if should_stop:
logger.info("Received signal to stop generating")
return should_stop
def prepare_lora(cfg, backbone):
target_modules = (
[
lora_target_module.strip()
for lora_target_module in cfg.training.lora_target_modules.strip().split( # noqa: E501
","
)
]
if cfg.training.lora_target_modules
else None
)
if target_modules is None:
target_modules = []
for name, module in backbone.named_modules():
if (
isinstance(
module, (torch.nn.Linear, torch.nn.Conv1d, Conv1DTransformer)
)
and "head" not in name
):
name = name.split(".")[-1]
if name not in target_modules:
target_modules.append(name)
if cfg.environment._local_rank == 0:
logger.info(f"Lora module names: {target_modules}")
lora_config = LoraConfig(
r=cfg.training.lora_r,
lora_alpha=cfg.training.lora_alpha,
target_modules=target_modules,
lora_dropout=cfg.training.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
if cfg.architecture.gradient_checkpointing:
backbone.enable_input_require_grads()
backbone = get_peft_model(backbone, lora_config)
backbone.print_trainable_parameters()
return backbone
def generate(backbone, batch, cfg, streamer, remove_prompt=True):
mask_key = "prompt_attention_mask"
pad_keys = [
"prompt_input_ids",
"prompt_attention_mask",
]
batch = batch_padding(
cfg,
batch,
training=False,
mask_key=mask_key,
pad_keys=pad_keys,
)
input_ids = batch["prompt_input_ids"]
attention_mask = batch["prompt_attention_mask"]
# Adding GenerationMixin type annotation for faster lookup
generation_function: GenerationMixin.generate = backbone.generate
verbosity = transformers_logging.get_verbosity()
stopping_criteria = StoppingCriteriaList(
[
TokenStoppingCriteria(
stop_word_ids=cfg.tokenizer._stop_words_ids,
prompt_input_ids_len=input_ids.shape[1],
),
EnvVariableStoppingCriteria(),
]
)
# force to use cache and disable gradient checkpointing if enabled
backbone.config.use_cache = True
if cfg.architecture.gradient_checkpointing:
backbone.gradient_checkpointing_disable()
transformers_logging.set_verbosity_error()
output = generation_function(
inputs=input_ids,
attention_mask=attention_mask,
generation_config=backbone.generation_config,
stopping_criteria=stopping_criteria,
renormalize_logits=True,
return_dict_in_generate=False,
use_cache=True,
streamer=streamer,
)
transformers_logging.set_verbosity(verbosity)
# enable checkpointing again
if cfg.architecture.gradient_checkpointing:
backbone.gradient_checkpointing_enable()
if remove_prompt:
output = output[:, input_ids.shape[1] :]
return output
def get_torch_dtype(dtype):
if dtype == "float16":
return torch.float16
elif dtype == "bfloat16":
return torch.bfloat16
else:
return torch.float32