File size: 9,162 Bytes
24e70a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
import sys
import time
import warnings

sys.path.append('./')  # to run '$ python *.py' files in subdirectories

import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile

import models
from models.experimental import attempt_load, End2End
from utils.activations import Hardswish, SiLU
from utils.general import set_logging, check_img_size
from utils.torch_utils import select_device
from utils.add_nms import RegisterNMS

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')  # height, width
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
    parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime')
    parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
    parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
    parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
    parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
    parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
    parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export')
    parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization')
    opt = parser.parse_args()
    opt.img_size *= 2 if len(opt.img_size) == 1 else 1  # expand
    opt.dynamic = opt.dynamic and not opt.end2end
    opt.dynamic = False if opt.dynamic_batch else opt.dynamic
    print(opt)
    set_logging()
    t = time.time()

    # Load PyTorch model
    device = select_device(opt.device)
    model = attempt_load(opt.weights, map_location=device)  # load FP32 model
    labels = model.names

    # Checks
    gs = int(max(model.stride))  # grid size (max stride)
    opt.img_size = [check_img_size(x, gs) for x in opt.img_size]  # verify img_size are gs-multiples

    # Input
    img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device)  # image size(1,3,320,192) iDetection

    # Update model
    for k, m in model.named_modules():
        m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility
        if isinstance(m, models.common.Conv):  # assign export-friendly activations
            if isinstance(m.act, nn.Hardswish):
                m.act = Hardswish()
            elif isinstance(m.act, nn.SiLU):
                m.act = SiLU()
        # elif isinstance(m, models.yolo.Detect):
        #     m.forward = m.forward_export  # assign forward (optional)
    model.model[-1].export = not opt.grid  # set Detect() layer grid export
    y = model(img)  # dry run
    if opt.include_nms:
        model.model[-1].include_nms = True
        y = None

    # TorchScript export
    try:
        print('\nStarting TorchScript export with torch %s...' % torch.__version__)
        f = opt.weights.replace('.pt', '.torchscript.pt')  # filename
        ts = torch.jit.trace(model, img, strict=False)
        ts.save(f)
        print('TorchScript export success, saved as %s' % f)
    except Exception as e:
        print('TorchScript export failure: %s' % e)

    # CoreML export
    try:
        import coremltools as ct

        print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
        # convert model from torchscript and apply pixel scaling as per detect.py
        ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
        bits, mode = (8, 'kmeans_lut') if opt.int8 else (16, 'linear') if opt.fp16 else (32, None)
        if bits < 32:
            if sys.platform.lower() == 'darwin':  # quantization only supported on macOS
                with warnings.catch_warnings():
                    warnings.filterwarnings("ignore", category=DeprecationWarning)  # suppress numpy==1.20 float warning
                    ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
            else:
                print('quantization only supported on macOS, skipping...')

        f = opt.weights.replace('.pt', '.mlmodel')  # filename
        ct_model.save(f)
        print('CoreML export success, saved as %s' % f)
    except Exception as e:
        print('CoreML export failure: %s' % e)
                     
    # TorchScript-Lite export
    try:
        print('\nStarting TorchScript-Lite export with torch %s...' % torch.__version__)
        f = opt.weights.replace('.pt', '.torchscript.ptl')  # filename
        tsl = torch.jit.trace(model, img, strict=False)
        tsl = optimize_for_mobile(tsl)
        tsl._save_for_lite_interpreter(f)
        print('TorchScript-Lite export success, saved as %s' % f)
    except Exception as e:
        print('TorchScript-Lite export failure: %s' % e)

    # ONNX export
    try:
        import onnx

        print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
        f = opt.weights.replace('.pt', '.onnx')  # filename
        model.eval()
        output_names = ['classes', 'boxes'] if y is None else ['output']
        dynamic_axes = None
        if opt.dynamic:
            dynamic_axes = {'images': {0: 'batch', 2: 'height', 3: 'width'},  # size(1,3,640,640)
             'output': {0: 'batch', 2: 'y', 3: 'x'}}
        if opt.dynamic_batch:
            opt.batch_size = 'batch'
            dynamic_axes = {
                'images': {
                    0: 'batch',
                }, }
            if opt.end2end and opt.max_wh is None:
                output_axes = {
                    'num_dets': {0: 'batch'},
                    'det_boxes': {0: 'batch'},
                    'det_scores': {0: 'batch'},
                    'det_classes': {0: 'batch'},
                }
            else:
                output_axes = {
                    'output': {0: 'batch'},
                }
            dynamic_axes.update(output_axes)
        if opt.grid:
            if opt.end2end:
                print('\nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime')
                model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device,len(labels))
                if opt.end2end and opt.max_wh is None:
                    output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
                    shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4,
                              opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all]
                else:
                    output_names = ['output']
            else:
                model.model[-1].concat = True

        torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
                          output_names=output_names,
                          dynamic_axes=dynamic_axes)

        # Checks
        onnx_model = onnx.load(f)  # load onnx model
        onnx.checker.check_model(onnx_model)  # check onnx model

        if opt.end2end and opt.max_wh is None:
            for i in onnx_model.graph.output:
                for j in i.type.tensor_type.shape.dim:
                    j.dim_param = str(shapes.pop(0))

        # print(onnx.helper.printable_graph(onnx_model.graph))  # print a human readable model

        # # Metadata
        # d = {'stride': int(max(model.stride))}
        # for k, v in d.items():
        #     meta = onnx_model.metadata_props.add()
        #     meta.key, meta.value = k, str(v)
        # onnx.save(onnx_model, f)

        if opt.simplify:
            try:
                import onnxsim

                print('\nStarting to simplify ONNX...')
                onnx_model, check = onnxsim.simplify(onnx_model)
                assert check, 'assert check failed'
            except Exception as e:
                print(f'Simplifier failure: {e}')

        # print(onnx.helper.printable_graph(onnx_model.graph))  # print a human readable model
        onnx.save(onnx_model,f)
        print('ONNX export success, saved as %s' % f)

        if opt.include_nms:
            print('Registering NMS plugin for ONNX...')
            mo = RegisterNMS(f)
            mo.register_nms()
            mo.save(f)

    except Exception as e:
        print('ONNX export failure: %s' % e)

    # Finish
    print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))