Spaces:
Running
Running
File size: 13,704 Bytes
24e70a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
from __future__ import print_function
import os
import numpy as np
##### NEW
# !pip --no-cache-dir install -U --force-reinstall matplotlib
import tkinter
import matplotlib
matplotlib.use('Agg')
###### NEW end
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from skimage import io
from random import randint
import glob
import time
import argparse
from filterpy.kalman import KalmanFilter
def get_color():
# r = randint(0, 255)
# g = randint(0, 255)
# b = randint(0, 255)
color = (randint(0, 255), randint(0, 255), randint(0, 255))
return color
def linear_assignment(cost_matrix):
try:
import lap #linear assignment problem solver
_, x, y = lap.lapjv(cost_matrix, extend_cost = True)
return np.array([[y[i],i] for i in x if i>=0])
except ImportError:
from scipy.optimize import linear_sum_assignment
x,y = linear_sum_assignment(cost_matrix)
return np.array(list(zip(x,y)))
"""From SORT: Computes IOU between two boxes in the form [x1,y1,x2,y2]"""
def iou_batch(bb_test, bb_gt):
bb_gt = np.expand_dims(bb_gt, 0)
bb_test = np.expand_dims(bb_test, 1)
xx1 = np.maximum(bb_test[...,0], bb_gt[..., 0])
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
w = np.maximum(0., xx2 - xx1)
h = np.maximum(0., yy2 - yy1)
wh = w * h
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
return(o)
"""Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the center of the box and s is the scale/area and r is the aspect ratio"""
def convert_bbox_to_z(bbox):
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x = bbox[0] + w/2.
y = bbox[1] + h/2.
s = w * h
#scale is just area
r = w / float(h)
return np.array([x, y, s, r]).reshape((4, 1))
"""Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right"""
def convert_x_to_bbox(x, score=None):
w = np.sqrt(x[2] * x[3])
h = x[2] / w
if(score==None):
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
else:
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
"""This class represents the internal state of individual tracked objects observed as bbox."""
class KalmanBoxTracker(object):
count = 0
def __init__(self, bbox):
"""
Initialize a tracker using initial bounding box
Parameter 'bbox' must have 'detected class' int number at the -1 position.
"""
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
self.kf.R[2:,2:] *= 10. # R: Covariance matrix of measurement noise (set to high for noisy inputs -> more 'inertia' of boxes')
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1,-1] *= 0.5 # Q: Covariance matrix of process noise (set to high for erratically moving things)
self.kf.Q[4:,4:] *= 0.5
self.kf.x[:4] = convert_bbox_to_z(bbox) # STATE VECTOR
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
self.centroidarr = []
CX = (bbox[0]+bbox[2])//2
CY = (bbox[1]+bbox[3])//2
self.centroidarr.append((CX,CY))
#keep yolov5 detected class information
self.detclass = bbox[5]
def update(self, bbox):
"""
Updates the state vector with observed bbox
"""
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1
self.kf.update(convert_bbox_to_z(bbox))
self.detclass = bbox[5]
CX = (bbox[0]+bbox[2])//2
CY = (bbox[1]+bbox[3])//2
self.centroidarr.append((CX,CY))
def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate
"""
if((self.kf.x[6]+self.kf.x[2])<=0):
self.kf.x[6] *= 0.0
self.kf.predict()
self.age += 1
if(self.time_since_update>0):
self.hit_streak = 0
self.time_since_update += 1
self.history.append(convert_x_to_bbox(self.kf.x))
# bbox=self.history[-1]
# CX = (bbox[0]+bbox[2])/2
# CY = (bbox[1]+bbox[3])/2
# self.centroidarr.append((CX,CY))
return self.history[-1]
def get_state(self):
"""
Returns the current bounding box estimate
# test
arr1 = np.array([[1,2,3,4]])
arr2 = np.array([0])
arr3 = np.expand_dims(arr2, 0)
np.concatenate((arr1,arr3), axis=1)
"""
arr_detclass = np.expand_dims(np.array([self.detclass]), 0)
arr_u_dot = np.expand_dims(self.kf.x[4],0)
arr_v_dot = np.expand_dims(self.kf.x[5],0)
arr_s_dot = np.expand_dims(self.kf.x[6],0)
return np.concatenate((convert_x_to_bbox(self.kf.x), arr_detclass, arr_u_dot, arr_v_dot, arr_s_dot), axis=1)
def associate_detections_to_trackers(detections, trackers, iou_threshold = 0.3):
"""
Assigns detections to tracked object (both represented as bounding boxes)
Returns 3 lists of
1. matches,
2. unmatched_detections
3. unmatched_trackers
"""
if(len(trackers)==0):
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
iou_matrix = iou_batch(detections, trackers)
if min(iou_matrix.shape) > 0:
a = (iou_matrix > iou_threshold).astype(np.int32)
if a.sum(1).max() == 1 and a.sum(0).max() ==1:
matched_indices = np.stack(np.where(a), axis=1)
else:
matched_indices = linear_assignment(-iou_matrix)
else:
matched_indices = np.empty(shape=(0,2))
unmatched_detections = []
for d, det in enumerate(detections):
if(d not in matched_indices[:,0]):
unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if(t not in matched_indices[:,1]):
unmatched_trackers.append(t)
#filter out matched with low IOU
matches = []
for m in matched_indices:
if(iou_matrix[m[0], m[1]]<iou_threshold):
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1,2))
if(len(matches)==0):
matches = np.empty((0,2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class Sort(object):
def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
"""
Parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.iou_threshold = iou_threshold
self.trackers = []
self.frame_count = 0
self.color_list = []
def getTrackers(self,):
return self.trackers
def update(self, dets= np.empty((0,6)), unique_color = False):
"""
Parameters:
'dets' - a numpy array of detection in the format [[x1, y1, x2, y2, score], [x1,y1,x2,y2,score],...]
Ensure to call this method even frame has no detections. (pass np.empty((0,5)))
Returns a similar array, where the last column is object ID (replacing confidence score)
NOTE: The number of objects returned may differ from the number of objects provided.
"""
self.frame_count += 1
# Get predicted locations from existing trackers
trks = np.zeros((len(self.trackers), 6))
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0, 0]
if np.any(np.isnan(pos)):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
if unique_color:
self.color_list.pop(t)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold)
# Update matched trackers with assigned detections
for m in matched:
self.trackers[m[1]].update(dets[m[0], :])
# Create and initialize new trackers for unmatched detections
for i in unmatched_dets:
trk = KalmanBoxTracker(np.hstack((dets[i,:], np.array([0]))))
self.trackers.append(trk)
if unique_color:
self.color_list.append(get_color())
i = len(self.trackers)
for trk in reversed(self.trackers):
d = trk.get_state()[0]
if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
ret.append(np.concatenate((d, [trk.id+1])).reshape(1,-1)) #+1'd because MOT benchmark requires positive value
i -= 1
#remove dead tracklet
if(trk.time_since_update >self.max_age):
self.trackers.pop(i)
if unique_color:
self.color_list.pop(i)
if(len(ret) > 0):
return np.concatenate(ret)
return np.empty((0,6))
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='SORT demo')
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
parser.add_argument("--seq_path", help="Path to detections.", type=str, default='data')
parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train')
parser.add_argument("--max_age",
help="Maximum number of frames to keep alive a track without associated detections.",
type=int, default=1)
parser.add_argument("--min_hits",
help="Minimum number of associated detections before track is initialised.",
type=int, default=3)
parser.add_argument("--iou_threshold", help="Minimum IOU for match.", type=float, default=0.3)
args = parser.parse_args()
return args
if __name__ == '__main__':
# all train
args = parse_args()
display = args.display
phase = args.phase
total_time = 0.0
total_frames = 0
colours = np.random.rand(32, 3) #used only for display
if(display):
if not os.path.exists('mot_benchmark'):
print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
exit()
plt.ion()
fig = plt.figure()
ax1 = fig.add_subplot(111, aspect='equal')
if not os.path.exists('output'):
os.makedirs('output')
pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt')
for seq_dets_fn in glob.glob(pattern):
mot_tracker = Sort(max_age=args.max_age,
min_hits=args.min_hits,
iou_threshold=args.iou_threshold) #create instance of the SORT tracker
seq_dets = np.loadtxt(seq_dets_fn, delimiter=',')
seq = seq_dets_fn[pattern.find('*'):].split(os.path.sep)[0]
with open(os.path.join('output', '%s.txt'%(seq)),'w') as out_file:
print("Processing %s."%(seq))
for frame in range(int(seq_dets[:,0].max())):
frame += 1 #detection and frame numbers begin at 1
dets = seq_dets[seq_dets[:, 0]==frame, 2:7]
dets[:, 2:4] += dets[:, 0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2]
total_frames += 1
if(display):
fn = os.path.join('mot_benchmark', phase, seq, 'img1', '%06d.jpg'%(frame))
im =io.imread(fn)
ax1.imshow(im)
plt.title(seq + ' Tracked Targets')
start_time = time.time()
trackers = mot_tracker.update(dets)
cycle_time = time.time() - start_time
total_time += cycle_time
for d in trackers:
print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file)
if(display):
d = d.astype(np.int32)
ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))
if(display):
fig.canvas.flush_events()
plt.draw()
ax1.cla()
print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time))
if(display):
print("Note: to get real runtime results run without the option: --display")
|