Spaces:
Running
Running
import gradio as gr | |
import os | |
import argparse | |
import time | |
from pathlib import Path | |
import cv2 | |
import torch | |
import torch.backends.cudnn as cudnn | |
from numpy import random | |
from models.experimental import attempt_load | |
from utils.datasets import LoadStreams, LoadImages | |
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \ | |
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path | |
from utils.plots import plot_one_box | |
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel | |
from PIL import Image | |
from sort import * | |
from huggingface_hub import hf_hub_download | |
def load_model(model_name): | |
model_path = hf_hub_download(repo_id=f"Yolov7/{model_name}", filename=f"{model_name}.pt") | |
return model_path | |
model_names = ["yolov7"] | |
models = {model_name: load_model(model_name) for model_name in model_names} | |
################################## | |
# """Function to Draw Bounding boxes""" | |
def draw_boxes(img, bbox, identities=None, categories=None, confidences = None, names=None, colors = None): | |
for i, box in enumerate(bbox): | |
x1, y1, x2, y2 = [int(i) for i in box] | |
tl = opt.thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness | |
cat = int(categories[i]) if categories is not None else 0 | |
id = int(identities[i]) if identities is not None else 0 | |
# conf = confidences[i] if confidences is not None else 0 | |
color = colors[cat] | |
if not opt.nobbox: | |
cv2.rectangle(img, (x1, y1), (x2, y2), color, tl) | |
if not opt.nolabel: | |
label = str(id) + ":"+ names[cat] if identities is not None else f'{names[cat]} {confidences[i]:.2f}' | |
tf = max(tl - 1, 1) # font thickness | |
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] | |
c2 = x1 + t_size[0], y1 - t_size[1] - 3 | |
cv2.rectangle(img, (x1, y1), c2, color, -1, cv2.LINE_AA) # filled | |
cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) | |
return img | |
################################## | |
def detect(save_img=True): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)') | |
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam | |
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') | |
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') | |
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--view-img', action='store_true', help='display results') | |
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |
parser.add_argument('--nosave', action='store_true', help='do not save images/videos') | |
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') | |
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | |
parser.add_argument('--augment', action='store_true', help='augmented inference') | |
parser.add_argument('--update', action='store_true', help='update all models') | |
parser.add_argument('--project', default='runs/detect', help='save results to project/name') | |
parser.add_argument('--name', default='exp', help='save results to project/name') | |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | |
parser.add_argument('--no-trace', action='store_true', help='don`t trace model') | |
parser.add_argument('--track', action='store_true', help='run tracking') | |
parser.add_argument('--show-track', action='store_true', help='show tracked path') | |
parser.add_argument('--show-fps', action='store_true', help='show fps') | |
parser.add_argument('--thickness', type=int, default=2, help='bounding box and font size thickness') | |
parser.add_argument('--seed', type=int, default=1, help='random seed to control bbox colors') | |
parser.add_argument('--nobbox', action='store_true', help='don`t show bounding box') | |
parser.add_argument('--nolabel', action='store_true', help='don`t show label') | |
parser.add_argument('--unique-track-color', action='store_true', help='show each track in unique color') | |
opt = parser.parse_args() | |
np.random.seed(opt.seed) | |
sort_tracker = Sort(max_age=5, | |
min_hits=2, | |
iou_threshold=0.2) | |
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace | |
save_img = not opt.nosave and not source.endswith('.txt') # save inference images | |
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( | |
('rtsp://', 'rtmp://', 'http://', 'https://')) | |
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run | |
if not opt.nosave: | |
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | |
# Initialize | |
set_logging() | |
device = select_device(opt.device) | |
half = device.type != 'cpu' # half precision only supported on CUDA | |
# Load model | |
model = attempt_load(weights, map_location=device) # load FP32 model | |
stride = int(model.stride.max()) # model stride | |
imgsz = check_img_size(imgsz, s=stride) # check img_size | |
if trace: | |
model = TracedModel(model, device, opt.img_size) | |
if half: | |
model.half() # to FP16 | |
# Second-stage classifier | |
classify = False | |
if classify: | |
modelc = load_classifier(name='resnet101', n=2) # initialize | |
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() | |
# Set Dataloader | |
vid_path, vid_writer = None, None | |
if webcam: | |
view_img = check_imshow() | |
cudnn.benchmark = True # set True to speed up constant image size inference | |
dataset = LoadStreams(source, img_size=imgsz, stride=stride) | |
else: | |
dataset = LoadImages(source, img_size=imgsz, stride=stride) | |
# Get names and colors | |
names = model.module.names if hasattr(model, 'module') else model.names | |
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] | |
# Run inference | |
if device.type != 'cpu': | |
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once | |
old_img_w = old_img_h = imgsz | |
old_img_b = 1 | |
t0 = time.time() | |
################################### | |
startTime = 0 | |
################################### | |
for path, img, im0s, vid_cap in dataset: | |
img = torch.from_numpy(img).to(device) | |
img = img.half() if half else img.float() # uint8 to fp16/32 | |
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
if img.ndimension() == 3: | |
img = img.unsqueeze(0) | |
# Warmup | |
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]): | |
old_img_b = img.shape[0] | |
old_img_h = img.shape[2] | |
old_img_w = img.shape[3] | |
for i in range(3): | |
model(img, augment=opt.augment)[0] | |
# Inference | |
t1 = time_synchronized() | |
pred = model(img, augment=opt.augment)[0] | |
t2 = time_synchronized() | |
# Apply NMS | |
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) | |
t3 = time_synchronized() | |
# Apply Classifier | |
if classify: | |
pred = apply_classifier(pred, modelc, img, im0s) | |
# Process detections | |
for i, det in enumerate(pred): # detections per image | |
if webcam: # batch_size >= 1 | |
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count | |
else: | |
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) | |
p = Path(p) # to Path | |
save_path = str(save_dir / p.name) # img.jpg | |
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt | |
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | |
if len(det): | |
# Rescale boxes from img_size to im0 size | |
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() | |
# Print results | |
for c in det[:, -1].unique(): | |
n = (det[:, -1] == c).sum() # detections per class | |
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | |
dets_to_sort = np.empty((0,6)) | |
# NOTE: We send in detected object class too | |
for x1,y1,x2,y2,conf,detclass in det.cpu().detach().numpy(): | |
dets_to_sort = np.vstack((dets_to_sort, | |
np.array([x1, y1, x2, y2, conf, detclass]))) | |
if opt.track: | |
tracked_dets = sort_tracker.update(dets_to_sort, opt.unique_track_color) | |
tracks =sort_tracker.getTrackers() | |
# draw boxes for visualization | |
if len(tracked_dets)>0: | |
bbox_xyxy = tracked_dets[:,:4] | |
identities = tracked_dets[:, 8] | |
categories = tracked_dets[:, 4] | |
confidences = None | |
if opt.show_track: | |
#loop over tracks | |
for t, track in enumerate(tracks): | |
track_color = colors[int(track.detclass)] if not opt.unique_track_color else sort_tracker.color_list[t] | |
[cv2.line(im0, (int(track.centroidarr[i][0]), | |
int(track.centroidarr[i][1])), | |
(int(track.centroidarr[i+1][0]), | |
int(track.centroidarr[i+1][1])), | |
track_color, thickness=opt.thickness) | |
for i,_ in enumerate(track.centroidarr) | |
if i < len(track.centroidarr)-1 ] | |
else: | |
bbox_xyxy = dets_to_sort[:,:4] | |
identities = None | |
categories = dets_to_sort[:, 5] | |
confidences = dets_to_sort[:, 4] | |
im0 = draw_boxes(im0, bbox_xyxy, identities, categories, confidences, names, colors) | |
# Print time (inference + NMS) | |
print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS') | |
# Stream results | |
###################################################### | |
if dataset.mode != 'image' and opt.show_fps: | |
currentTime = time.time() | |
fps = 1/(currentTime - startTime) | |
startTime = currentTime | |
cv2.putText(im0, "FPS: " + str(int(fps)), (20, 70), cv2.FONT_HERSHEY_PLAIN, 2, (0,255,0),2) | |
####################################################### | |
if view_img: | |
cv2.imshow(str(p), im0) | |
cv2.waitKey(1) # 1 millisecond | |
# Save results (image with detections) | |
if save_img: | |
if dataset.mode == 'image': | |
cv2.imwrite(save_path, im0) | |
print(f" The image with the result is saved in: {save_path}") | |
else: # 'video' or 'stream' | |
if vid_path != save_path: # new video | |
vid_path = save_path | |
if isinstance(vid_writer, cv2.VideoWriter): | |
vid_writer.release() # release previous video writer | |
if vid_cap: # video | |
fps = vid_cap.get(cv2.CAP_PROP_FPS) | |
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
else: # stream | |
fps, w, h = 30, im0.shape[1], im0.shape[0] | |
save_path += '.mp4' | |
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) | |
vid_writer.write(im0) | |
if save_txt or save_img: | |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' | |
#print(f"Results saved to {save_dir}{s}") | |
print(f'Done. ({time.time() - t0:.3f}s)') | |
return img | |
desc = "demo for <a href='https://github.com/WongKinYiu/yolov7' style='text-decoration: underline' target='_blank'>WongKinYiu/yolov7</a> Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors" | |
gr.Interface(detect, | |
inputs = [gr.Video(format="mp4")], | |
outputs = gr.Video(format="mp4"), | |
title="Yolov7",description=desc).launch() | |
# gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=model_names)], gr.Image(type="pil"),title="Yolov7",examples=[["horses.jpeg", "yolov7"]],description="demo for <a href='https://github.com/WongKinYiu/yolov7' style='text-decoration: underline' target='_blank'>WongKinYiu/yolov7</a> Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors").launch() |