# Extraction & Chunking Strategies API This documentation covers the API reference for extraction and chunking strategies in Crawl4AI. ## Extraction Strategies All extraction strategies inherit from the base `ExtractionStrategy` class and implement two key methods: - `extract(url: str, html: str) -> List[Dict[str, Any]]` - `run(url: str, sections: List[str]) -> List[Dict[str, Any]]` ### LLMExtractionStrategy Used for extracting structured data using Language Models. ```python LLMExtractionStrategy( # Required Parameters provider: str = DEFAULT_PROVIDER, # LLM provider (e.g., "ollama/llama2") api_token: Optional[str] = None, # API token # Extraction Configuration instruction: str = None, # Custom extraction instruction schema: Dict = None, # Pydantic model schema for structured data extraction_type: str = "block", # "block" or "schema" # Chunking Parameters chunk_token_threshold: int = 4000, # Maximum tokens per chunk overlap_rate: float = 0.1, # Overlap between chunks word_token_rate: float = 0.75, # Word to token conversion rate apply_chunking: bool = True, # Enable/disable chunking # API Configuration base_url: str = None, # Base URL for API extra_args: Dict = {}, # Additional provider arguments verbose: bool = False # Enable verbose logging ) ``` ### CosineStrategy Used for content similarity-based extraction and clustering. ```python CosineStrategy( # Content Filtering semantic_filter: str = None, # Topic/keyword filter word_count_threshold: int = 10, # Minimum words per cluster sim_threshold: float = 0.3, # Similarity threshold # Clustering Parameters max_dist: float = 0.2, # Maximum cluster distance linkage_method: str = 'ward', # Clustering method top_k: int = 3, # Top clusters to return # Model Configuration model_name: str = 'sentence-transformers/all-MiniLM-L6-v2', # Embedding model verbose: bool = False # Enable verbose logging ) ``` ### JsonCssExtractionStrategy Used for CSS selector-based structured data extraction. ```python JsonCssExtractionStrategy( schema: Dict[str, Any], # Extraction schema verbose: bool = False # Enable verbose logging ) # Schema Structure schema = { "name": str, # Schema name "baseSelector": str, # Base CSS selector "fields": [ # List of fields to extract { "name": str, # Field name "selector": str, # CSS selector "type": str, # Field type: "text", "attribute", "html", "regex" "attribute": str, # For type="attribute" "pattern": str, # For type="regex" "transform": str, # Optional: "lowercase", "uppercase", "strip" "default": Any # Default value if extraction fails } ] } ``` ## Chunking Strategies All chunking strategies inherit from `ChunkingStrategy` and implement the `chunk(text: str) -> list` method. ### RegexChunking Splits text based on regex patterns. ```python RegexChunking( patterns: List[str] = None # Regex patterns for splitting # Default: [r'\n\n'] ) ``` ### SlidingWindowChunking Creates overlapping chunks with a sliding window approach. ```python SlidingWindowChunking( window_size: int = 100, # Window size in words step: int = 50 # Step size between windows ) ``` ### OverlappingWindowChunking Creates chunks with specified overlap. ```python OverlappingWindowChunking( window_size: int = 1000, # Chunk size in words overlap: int = 100 # Overlap size in words ) ``` ## Usage Examples ### LLM Extraction ```python from pydantic import BaseModel from crawl4ai.extraction_strategy import LLMExtractionStrategy # Define schema class Article(BaseModel): title: str content: str author: str # Create strategy strategy = LLMExtractionStrategy( provider="ollama/llama2", schema=Article.schema(), instruction="Extract article details" ) # Use with crawler result = await crawler.arun( url="https://example.com/article", extraction_strategy=strategy ) # Access extracted data data = json.loads(result.extracted_content) ``` ### CSS Extraction ```python from crawl4ai.extraction_strategy import JsonCssExtractionStrategy # Define schema schema = { "name": "Product List", "baseSelector": ".product-card", "fields": [ { "name": "title", "selector": "h2.title", "type": "text" }, { "name": "price", "selector": ".price", "type": "text", "transform": "strip" }, { "name": "image", "selector": "img", "type": "attribute", "attribute": "src" } ] } # Create and use strategy strategy = JsonCssExtractionStrategy(schema) result = await crawler.arun( url="https://example.com/products", extraction_strategy=strategy ) ``` ### Content Chunking ```python from crawl4ai.chunking_strategy import OverlappingWindowChunking # Create chunking strategy chunker = OverlappingWindowChunking( window_size=500, # 500 words per chunk overlap=50 # 50 words overlap ) # Use with extraction strategy strategy = LLMExtractionStrategy( provider="ollama/llama2", chunking_strategy=chunker ) result = await crawler.arun( url="https://example.com/long-article", extraction_strategy=strategy ) ``` ## Best Practices 1. **Choose the Right Strategy** - Use `LLMExtractionStrategy` for complex, unstructured content - Use `JsonCssExtractionStrategy` for well-structured HTML - Use `CosineStrategy` for content similarity and clustering 2. **Optimize Chunking** ```python # For long documents strategy = LLMExtractionStrategy( chunk_token_threshold=2000, # Smaller chunks overlap_rate=0.1 # 10% overlap ) ``` 3. **Handle Errors** ```python try: result = await crawler.arun( url="https://example.com", extraction_strategy=strategy ) if result.success: content = json.loads(result.extracted_content) except Exception as e: print(f"Extraction failed: {e}") ``` 4. **Monitor Performance** ```python strategy = CosineStrategy( verbose=True, # Enable logging word_count_threshold=20, # Filter short content top_k=5 # Limit results ) ```