Spaces:
Runtime error
Runtime error
specific tokenizer defined
Browse files- analyzer.py +4 -14
analyzer.py
CHANGED
@@ -3,6 +3,7 @@ from typing import Dict, Optional, Union
|
|
3 |
from transformers import (
|
4 |
AutoModelForSequenceClassification,
|
5 |
AutoModelForTokenClassification,
|
|
|
6 |
AutoTokenizer,
|
7 |
TokenClassificationPipeline,
|
8 |
)
|
@@ -34,19 +35,19 @@ class NewsAnalyzer:
|
|
34 |
model=AutoModelForSequenceClassification.from_pretrained(
|
35 |
category_model_name
|
36 |
),
|
37 |
-
tokenizer=
|
38 |
emojis=CATEGORY_EMOJIS,
|
39 |
)
|
40 |
self.fake_pipe = NewsPipeline(
|
41 |
model=AutoModelForSequenceClassification.from_pretrained(fake_model_name),
|
42 |
-
tokenizer=
|
43 |
emojis=FAKE_EMOJIS,
|
44 |
)
|
45 |
self.clickbait_pipe = NewsPipeline(
|
46 |
model=AutoModelForSequenceClassification.from_pretrained(
|
47 |
clickbait_model_name
|
48 |
),
|
49 |
-
tokenizer=
|
50 |
emojis=CLICKBAIT_EMOJIS,
|
51 |
)
|
52 |
self.ner_pipe = TokenClassificationPipeline(
|
@@ -67,14 +68,3 @@ class NewsAnalyzer:
|
|
67 |
"content": self.ner_pipe(content) if content else None,
|
68 |
},
|
69 |
}
|
70 |
-
|
71 |
-
|
72 |
-
if __name__ == "__main__":
|
73 |
-
analyzer = NewsAnalyzer(
|
74 |
-
category_model_name="elozano/news-category",
|
75 |
-
fake_model_name="elozano/news-fake",
|
76 |
-
clickbait_model_name="elozano/news-clickbait",
|
77 |
-
ner_model_name="dslim/bert-base-NER",
|
78 |
-
)
|
79 |
-
prediction = analyzer(headline="Lakers Won!")
|
80 |
-
print(prediction)
|
|
|
3 |
from transformers import (
|
4 |
AutoModelForSequenceClassification,
|
5 |
AutoModelForTokenClassification,
|
6 |
+
BertTokenizer,
|
7 |
AutoTokenizer,
|
8 |
TokenClassificationPipeline,
|
9 |
)
|
|
|
35 |
model=AutoModelForSequenceClassification.from_pretrained(
|
36 |
category_model_name
|
37 |
),
|
38 |
+
tokenizer=BertTokenizer.from_pretrained(category_model_name),
|
39 |
emojis=CATEGORY_EMOJIS,
|
40 |
)
|
41 |
self.fake_pipe = NewsPipeline(
|
42 |
model=AutoModelForSequenceClassification.from_pretrained(fake_model_name),
|
43 |
+
tokenizer=BertTokenizer.from_pretrained(fake_model_name),
|
44 |
emojis=FAKE_EMOJIS,
|
45 |
)
|
46 |
self.clickbait_pipe = NewsPipeline(
|
47 |
model=AutoModelForSequenceClassification.from_pretrained(
|
48 |
clickbait_model_name
|
49 |
),
|
50 |
+
tokenizer=BertTokenizer.from_pretrained(clickbait_model_name),
|
51 |
emojis=CLICKBAIT_EMOJIS,
|
52 |
)
|
53 |
self.ner_pipe = TokenClassificationPipeline(
|
|
|
68 |
"content": self.ner_pipe(content) if content else None,
|
69 |
},
|
70 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|