Spaces:
Sleeping
Sleeping
import streamlit as st | |
from util import developer_info, developer_info_static | |
from src.plot import plot_clusters, correlation_matrix_plotly | |
from src.handle_null_value import contains_missing_value, remove_high_null, fill_null_values | |
from src.preprocess import convert_to_numeric, remove_duplicates, transform_data_for_clustering | |
from src.llm_service import decide_fill_null, decide_encode_type, decide_cluster_model | |
from src.pca import decide_pca, perform_PCA_for_clustering | |
from src.model_service import save_model, calculate_silhouette_score, calculate_calinski_harabasz_score, calculate_davies_bouldin_score, gmm_predict, estimate_optimal_clusters | |
from src.cluster_model import train_select_cluster_model | |
from src.util import contain_null_attributes_info, separate_fill_null_list, check_all_columns_numeric, non_numeric_columns_and_head, separate_decode_list, get_cluster_method_name | |
def start_training_model(): | |
st.session_state["start_training"] = True | |
def cluster_model_pipeline(DF, API_KEY, GPT_MODEL): | |
st.divider() | |
st.subheader('Data Overview') | |
if 'data_origin' not in st.session_state: | |
st.session_state.data_origin = DF | |
st.dataframe(st.session_state.data_origin.describe(), width=1200) | |
# Data Imputation | |
st.subheader('Handle and Impute Missing Values') | |
if "contain_null" not in st.session_state: | |
st.session_state.contain_null = contains_missing_value(st.session_state.data_origin) | |
if 'filled_df' not in st.session_state: | |
if st.session_state.contain_null: | |
with st.status("Processing **missing values** in the data...", expanded=True) as status: | |
st.write("Filtering out high-frequency missing rows and columns...") | |
filled_df = remove_high_null(DF) | |
st.write("Large language model analysis...") | |
attributes, types_info, description_info = contain_null_attributes_info(filled_df) | |
fill_result_dict = decide_fill_null(attributes, types_info, description_info, GPT_MODEL, API_KEY) | |
st.write("Imputing missing values...") | |
mean_list, median_list, mode_list, new_category_list, interpolation_list = separate_fill_null_list(fill_result_dict) | |
filled_df = fill_null_values(filled_df, mean_list, median_list, mode_list, new_category_list, interpolation_list) | |
# Store the imputed DataFrame in session_state | |
st.session_state.filled_df = filled_df | |
DF = filled_df | |
status.update(label='Missing value processing completed!', state="complete", expanded=False) | |
st.download_button( | |
label="Download Data with Missing Values Imputed", | |
data=st.session_state.filled_df.to_csv(index=False).encode('utf-8'), | |
file_name="imputed_missing_values.csv", | |
mime='text/csv') | |
else: | |
st.session_state.filled_df = DF | |
st.success("No missing values detected. Processing skipped.") | |
else: | |
st.success("Missing value processing completed!") | |
if st.session_state.contain_null: | |
st.download_button( | |
label="Download Data with Missing Values Imputed", | |
data=st.session_state.filled_df.to_csv(index=False).encode('utf-8'), | |
file_name="imputed_missing_values.csv", | |
mime='text/csv') | |
# Data Encoding | |
st.subheader("Process Data Encoding") | |
st.caption("*For considerations of processing time, **NLP features** like **TF-IDF** have not been included in the current pipeline, long text attributes may be dropped.") | |
if 'all_numeric' not in st.session_state: | |
st.session_state.all_numeric = check_all_columns_numeric(st.session_state.data_origin) | |
if 'encoded_df' not in st.session_state: | |
if not st.session_state.all_numeric: | |
with st.status("Encoding non-numeric data using **numeric mapping** and **one-hot**...", expanded=True) as status: | |
non_numeric_attributes, non_numeric_head = non_numeric_columns_and_head(DF) | |
st.write("Large language model analysis...") | |
encode_result_dict = decide_encode_type(non_numeric_attributes, non_numeric_head, GPT_MODEL, API_KEY) | |
st.write("Encoding the data...") | |
convert_int_cols, one_hot_cols, drop_cols = separate_decode_list(encode_result_dict, "") | |
encoded_df, mappings = convert_to_numeric(DF, convert_int_cols, one_hot_cols, drop_cols) | |
# Store the imputed DataFrame in session_state | |
st.session_state.encoded_df = encoded_df | |
DF = encoded_df | |
status.update(label='Data encoding completed!', state="complete", expanded=False) | |
st.download_button( | |
label="Download Encoded Data", | |
data=st.session_state.encoded_df.to_csv(index=False).encode('utf-8'), | |
file_name="encoded_data.csv", | |
mime='text/csv') | |
else: | |
st.session_state.encoded_df = DF | |
st.success("All columns are numeric. Processing skipped.") | |
else: | |
st.success("Data encoded completed using numeric mapping and one-hot!") | |
if not st.session_state.all_numeric: | |
st.download_button( | |
label="Download Encoded Data", | |
data=st.session_state.encoded_df.to_csv(index=False).encode('utf-8'), | |
file_name="encoded_data.csv", | |
mime='text/csv') | |
# Correlation Heatmap | |
if 'df_cleaned1' not in st.session_state: | |
st.session_state.df_cleaned1 = DF | |
st.subheader('Correlation Between Attributes') | |
st.plotly_chart(correlation_matrix_plotly(st.session_state.df_cleaned1)) | |
# Remove duplicate entities | |
st.subheader('Remove Duplicate Entities') | |
if 'df_cleaned2' not in st.session_state: | |
st.session_state.df_cleaned2 = remove_duplicates(st.session_state.df_cleaned1) | |
# DF = remove_duplicates(DF) | |
st.info("Duplicate rows removed.") | |
# Data Transformation | |
st.subheader('Data Transformation') | |
if 'data_transformed' not in st.session_state: | |
st.session_state.data_transformed = transform_data_for_clustering(st.session_state.df_cleaned2) | |
st.success("Data transformed by standardization and box-cox if applicable.") | |
# PCA | |
st.subheader('Principal Component Analysis') | |
st.write("Deciding whether to perform PCA...") | |
if 'df_pca' not in st.session_state: | |
_, n_components = decide_pca(st.session_state.df_cleaned2) | |
st.session_state.df_pca = perform_PCA_for_clustering(st.session_state.data_transformed, n_components) | |
st.success("Completed!") | |
# Splitting and Balancing | |
if 'test_percentage' not in st.session_state: | |
st.session_state.test_percentage = 20 | |
if 'balance_data' not in st.session_state: | |
st.session_state.balance_data = False | |
if "start_training" not in st.session_state: | |
st.session_state["start_training"] = False | |
if 'model_trained' not in st.session_state: | |
st.session_state['model_trained'] = False | |
splitting_column, balance_column = st.columns(2) | |
with splitting_column: | |
st.subheader(':grey[Data Splitting]') | |
st.caption('Data splitting is not applicable to clustering models.') | |
st.slider('Percentage of test set', 1, 25, st.session_state.test_percentage, key='test_percentage', disabled=True) | |
with balance_column: | |
st.metric(label="Test Data", value="--%", delta=None) | |
st.toggle('Class Balancing', value=st.session_state.balance_data, key='to_perform_balance', disabled=True) | |
st.caption('Class balancing is not applicable to clustering models.') | |
st.button("Start Training Model", on_click=start_training_model, type="primary", disabled=st.session_state['start_training']) | |
# Model Training | |
if st.session_state['start_training']: | |
with st.container(): | |
st.header("Modeling") | |
if not st.session_state.get("data_prepared", False): | |
st.session_state.X = st.session_state.df_pca | |
st.session_state.data_prepared = True | |
# Decide model types: | |
if "decided_model" not in st.session_state: | |
st.session_state["decided_model"] = False | |
if "all_set" not in st.session_state: | |
st.session_state["all_set"] = False | |
if not st.session_state["decided_model"]: | |
with st.spinner("Deciding models based on data..."): | |
shape_info = str(st.session_state.X.shape) | |
description_info = st.session_state.X.describe().to_csv() | |
cluster_info = estimate_optimal_clusters(st.session_state.X) | |
st.session_state.default_cluster = cluster_info | |
model_dict = decide_cluster_model(shape_info, description_info, cluster_info, GPT_MODEL, API_KEY) | |
model_list = list(model_dict.values()) | |
if 'model_list' not in st.session_state: | |
st.session_state.model_list = model_list | |
st.session_state.decided_model = True | |
# Display results | |
if st.session_state["decided_model"]: | |
display_results(st.session_state.X) | |
st.session_state["all_set"] = True | |
# Download models | |
if st.session_state["all_set"]: | |
download_col1, download_col2, download_col3 = st.columns(3) | |
with download_col1: | |
st.download_button(label="Download Model", data=st.session_state.downloadable_model1, file_name=f"{st.session_state.model1_name}.joblib", mime="application/octet-stream") | |
with download_col2: | |
st.download_button(label="Download Model", data=st.session_state.downloadable_model2, file_name=f"{st.session_state.model2_name}.joblib", mime="application/octet-stream") | |
with download_col3: | |
st.download_button(label="Download Model", data=st.session_state.downloadable_model3, file_name=f"{st.session_state.model3_name}.joblib", mime="application/octet-stream") | |
# Footer | |
st.divider() | |
if "all_set" in st.session_state and st.session_state["all_set"]: | |
if "has_been_set" not in st.session_state: | |
st.session_state["has_been_set"] = True | |
developer_info() | |
else: | |
developer_info_static() | |
def display_results(X): | |
st.success("Models selected based on your data!") | |
# Data set metrics | |
st.metric(label="Total Data", value=len(X), delta=None) | |
# Model training | |
model_col1, model_col2, model_col3 = st.columns(3) | |
with model_col1: | |
if "model1_name" not in st.session_state: | |
st.session_state.model1_name = get_cluster_method_name(st.session_state.model_list[0]) | |
st.subheader(st.session_state.model1_name) | |
# Slider for model parameters | |
if st.session_state.model_list[0] == 2: | |
st.caption('N-cluster is not applicable to DBSCAN.') | |
else: | |
st.caption(f'N-cluster for {st.session_state.model1_name}:') | |
n_clusters1 = st.slider('N clusters', 2, 20, st.session_state.default_cluster, label_visibility="collapsed", key='n_clusters1', disabled=st.session_state.model_list[0] == 2) | |
with st.spinner("Model training in progress..."): | |
st.session_state.model1 = train_select_cluster_model(X, n_clusters1, st.session_state.model_list[0]) | |
st.session_state.downloadable_model1 = save_model(st.session_state.model1) | |
if st.session_state.model_list[0] != 3: | |
label1 = st.session_state.model1.labels_ | |
else: | |
label1 = gmm_predict(X, st.session_state.model1) | |
# Visualization | |
st.pyplot(plot_clusters(X, label1)) | |
# Model metrics | |
st.write(f"Silhouette score: ", f'\n:green[**{calculate_silhouette_score(X, label1)}**]') | |
st.write(f"Calinski-Harabasz score: ", f'\n:green[**{calculate_calinski_harabasz_score(X, label1)}**]') | |
st.write(f"Davies-Bouldin score: ", f'\n:green[**{calculate_davies_bouldin_score(X, label1)}**]') | |
with model_col2: | |
if "model2_name" not in st.session_state: | |
st.session_state.model2_name = get_cluster_method_name(st.session_state.model_list[1]) | |
st.subheader(st.session_state.model2_name) | |
# Slider for model parameters | |
if st.session_state.model_list[1] == 2: | |
st.caption('N-cluster is not applicable to DBSCAN.') | |
else: | |
st.caption(f'N-cluster for {st.session_state.model2_name}:') | |
n_clusters2 = st.slider('N clusters', 2, 20, st.session_state.default_cluster, label_visibility="collapsed", key='n_clusters2', disabled=st.session_state.model_list[1] == 2) | |
with st.spinner("Model training in progress..."): | |
st.session_state.model2 = train_select_cluster_model(X, n_clusters2, st.session_state.model_list[1]) | |
st.session_state.downloadable_model2 = save_model(st.session_state.model2) | |
if st.session_state.model_list[1] != 3: | |
label2 = st.session_state.model2.labels_ | |
else: | |
label2 = gmm_predict(X, st.session_state.model2) | |
# Visualization | |
st.pyplot(plot_clusters(X, label2)) | |
# Model metrics | |
st.write(f"Silhouette score: ", f'\n:green[**{calculate_silhouette_score(X, label2)}**]') | |
st.write(f"Calinski-Harabasz score: ", f'\n:green[**{calculate_calinski_harabasz_score(X, label2)}**]') | |
st.write(f"Davies-Bouldin score: ", f'\n:green[**{calculate_davies_bouldin_score(X, label2)}**]') | |
with model_col3: | |
if "model3_name" not in st.session_state: | |
st.session_state.model3_name = get_cluster_method_name(st.session_state.model_list[2]) | |
st.subheader(st.session_state.model3_name) | |
# Slider for model parameters | |
if st.session_state.model_list[2] == 2: | |
st.caption('N-cluster is not applicable to DBSCAN.') | |
else: | |
st.caption(f'N-cluster for {st.session_state.model3_name}:') | |
n_clusters3 = st.slider('N clusters', 2, 20, st.session_state.default_cluster, label_visibility="collapsed", key='n_clusters3', disabled=st.session_state.model_list[2] == 2) | |
with st.spinner("Model training in progress..."): | |
st.session_state.model3 = train_select_cluster_model(X, n_clusters3, st.session_state.model_list[2]) | |
st.session_state.downloadable_model3 = save_model(st.session_state.model3) | |
if st.session_state.model_list[2] != 3: | |
label3 = st.session_state.model3.labels_ | |
else: | |
label3 = gmm_predict(X, st.session_state.model3) | |
# Visualization | |
st.pyplot(plot_clusters(X, label3)) | |
# Model metrics | |
st.write(f"Silhouette score: ", f'\n:green[**{calculate_silhouette_score(X, label3)}**]') | |
st.write(f"Calinski-Harabasz score: ", f'\n:green[**{calculate_calinski_harabasz_score(X, label3)}**]') | |
st.write(f"Davies-Bouldin score: ", f'\n:green[**{calculate_davies_bouldin_score(X, label3)}**]') | |