import time import streamlit as st from streamlit_lottie import st_lottie from util import load_lottie, stream_data, welcome_message, introduction_message from prediction_model import prediction_model_pipeline from cluster_model import cluster_model_pipeline from regression_model import regression_model_pipeline from visualization import data_visualization from src.util import read_file_from_streamlit st.set_page_config(page_title="Streamline Analyst", page_icon=":rocket:", layout="wide") # TITLE SECTION with st.container(): st.subheader("Hello there 👋") st.title("Welcome to Streamline Analyst!") if 'initialized' not in st.session_state: st.session_state.initialized = True if st.session_state.initialized: st.session_state.welcome_message = welcome_message() st.write(stream_data(st.session_state.welcome_message)) time.sleep(0.5) st.caption("There is a demo vedio on GitHub") st.write("[Github > ](https://github.com/Wilson-ZheLin/Streamline-Analyst)") st.session_state.initialized = False else: st.write(st.session_state.welcome_message) st.caption("There is a demo vedio on GitHub") st.write("[Github > ](https://github.com/Wilson-ZheLin/Streamline-Analyst)") # INTRO SECTION with st.container(): st.divider() if 'lottie' not in st.session_state: st.session_state.lottie_url1, st.session_state.lottie_url2 = load_lottie() st.session_state.lottie = True left_column_r1, right_column_r1 = st.columns([6, 4]) with left_column_r1: st.header("What can Streamline Analyst do?") st.write(introduction_message()[0]) with right_column_r1: if st.session_state.lottie: st_lottie(st.session_state.lottie_url1, height=280, key="animation1") left_column_r2, _, right_column_r2 = st.columns([6, 1, 5]) with left_column_r2: if st.session_state.lottie: st_lottie(st.session_state.lottie_url2, height=200, key="animation2") with right_column_r2: st.header("Simple to Use") st.write(introduction_message()[1]) # MAIN SECTION with st.container(): st.divider() st.header("Let's Get Started") left_column, right_column = st.columns([6, 4]) with left_column: API_KEY = st.text_input( "Your API Key won't be stored or shared!", placeholder="Enter your API key here...", ) st.write("👆Your OpenAI API key:") uploaded_file = st.file_uploader("Choose a data file. Your data won't be stored as well!", accept_multiple_files=False, type=['csv', 'json', 'xls', 'xlsx']) if uploaded_file: if uploaded_file.getvalue(): uploaded_file.seek(0) st.session_state.DF_uploaded = read_file_from_streamlit(uploaded_file) st.session_state.is_file_empty = False else: st.session_state.is_file_empty = True with right_column: SELECTED_MODEL = st.selectbox( 'Which OpenAI model do you want to use?', ('GPT-4-Turbo', 'GPT-3.5-Turbo')) MODE = st.selectbox( 'Select proper data analysis mode', ('Predictive Classification', 'Clustering Model', 'Regression Model', 'Data Visualization')) st.write(f'Model selected: :green[{SELECTED_MODEL}]') st.write(f'Data analysis mode: :green[{MODE}]') # Proceed Button is_proceed_enabled = uploaded_file is not None and API_KEY != "" or uploaded_file is not None and MODE == "Data Visualization" # Initialize the 'button_clicked' state if 'button_clicked' not in st.session_state: st.session_state.button_clicked = False if st.button('Start Analysis', disabled=(not is_proceed_enabled) or st.session_state.button_clicked, type="primary"): st.session_state.button_clicked = True if "is_file_empty" in st.session_state and st.session_state.is_file_empty: st.caption('Your data file is empty!') # Start Analysis if st.session_state.button_clicked: GPT_MODEL = 4 if SELECTED_MODEL == 'GPT-4-Turbo' else 3.5 with st.container(): if "DF_uploaded" not in st.session_state: st.error("File is empty!") else: if MODE == 'Predictive Classification': prediction_model_pipeline(st.session_state.DF_uploaded, API_KEY, GPT_MODEL) elif MODE == 'Clustering Model': cluster_model_pipeline(st.session_state.DF_uploaded, API_KEY, GPT_MODEL) elif MODE == 'Regression Model': regression_model_pipeline(st.session_state.DF_uploaded, API_KEY, GPT_MODEL) elif MODE == 'Data Visualization': data_visualization(st.session_state.DF_uploaded)