File size: 5,170 Bytes
bd4c825
 
d3f3fad
bd4c825
 
 
 
 
d3f3fad
5c45105
bd4c825
 
 
 
 
 
 
 
 
 
 
 
5c45105
 
 
 
bd4c825
5c45105
 
bd4c825
5c45105
 
bd4c825
 
 
5c45105
 
 
bd4c825
5c45105
bd4c825
 
 
 
 
 
 
 
d3f3fad
 
 
5c45105
bd4c825
 
 
 
 
 
 
d3f3fad
bd4c825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f3fad
 
bd4c825
 
d3f3fad
bd4c825
 
d3f3fad
bd4c825
d3f3fad
bd4c825
d3f3fad
bd4c825
 
 
 
 
 
 
 
 
 
 
 
 
d3f3fad
 
98ea928
bd4c825
d3f3fad
 
bd4c825
 
 
 
 
 
 
 
07bf00f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from typing import Annotated, List, Tuple, Union

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.tools import tool
from langchain_experimental.tools import PythonREPLTool

from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_openai import ChatOpenAI

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser

import operator
from typing import Annotated, Any, Dict, List, Optional, Sequence, TypedDict
import functools

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import StateGraph, END

def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
    # Each worker node will be given a name and some tools.
    prompt = ChatPromptTemplate.from_messages(
        [
            (
                "system",
                system_prompt,
            ),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),
        ]
    )
    agent = create_openai_tools_agent(llm, tools, prompt)
    executor = AgentExecutor(agent=agent, tools=tools)
    return executor

def agent_node(state, agent, name):
    result = agent.invoke(state)
    return {"messages": [HumanMessage(content=result["output"], name=name)]}

# The agent state is the input to each node in the graph
class AgentState(TypedDict):
    # The annotation tells the graph that new messages will always
    # be added to the current states
    messages: Annotated[Sequence[BaseMessage], operator.add]
    # The 'next' field indicates where to route to next
    next: str
    
def run_multi_agent(prompt):
    tavily_tool = TavilySearchResults(max_results=5)
    repl = PythonREPL()

    members = ["Researcher", "Coder"]
    system_prompt = (
        "You are a supervisor tasked with managing a conversation between the"
        " following workers:  {members}. Given the following user request,"
        " respond with the worker to act next. Each worker will perform a"
        " task and respond with their results and status. When finished,"
        " respond with FINISH."
    )
    # Our team supervisor is an LLM node. It just picks the next agent to process
    # and decides when the work is completed
    options = ["FINISH"] + members
    # Using openai function calling can make output parsing easier for us
    function_def = {
        "name": "route",
        "description": "Select the next role.",
        "parameters": {
            "title": "routeSchema",
            "type": "object",
            "properties": {
                "next": {
                    "title": "Next",
                    "anyOf": [
                        {"enum": options},
                    ],
                }
            },
            "required": ["next"],
        },
    }
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_prompt),
            MessagesPlaceholder(variable_name="messages"),
            (
                "system",
                "Given the conversation above, who should act next?"
                " Or should we FINISH? Select one of: {options}",
            ),
        ]
    ).partial(options=str(options), members=", ".join(members))
    
    llm = ChatOpenAI(model="gpt-4-1106-preview")
    
    supervisor_chain = (
        prompt
        | llm.bind_functions(functions=[function_def], function_call="route")
        | JsonOutputFunctionsParser()
    )

    research_agent = create_agent(llm, [tavily_tool], "You are a web researcher.")
    research_node = functools.partial(agent_node, agent=research_agent, name="Researcher")
    
    # NOTE: THIS PERFORMS ARBITRARY CODE EXECUTION. PROCEED WITH CAUTION
    code_agent = create_agent(
        llm,
        [python_repl_tool],
        "You may generate safe python code to analyze data and generate charts using matplotlib.",
    )
    code_node = functools.partial(agent_node, agent=code_agent, name="Coder")
    
    workflow = StateGraph(AgentState)
    workflow.add_node("Researcher", research_node)
    workflow.add_node("Coder", code_node)
    workflow.add_node("supervisor", supervisor_chain)

    for member in members:
        # We want our workers to ALWAYS "report back" to the supervisor when done
        workflow.add_edge(member, "supervisor")
    # The supervisor populates the "next" field in the graph state
    # which routes to a node or finishes
    conditional_map = {k: k for k in members}
    conditional_map["FINISH"] = END
    workflow.add_conditional_edges("supervisor", lambda x: x["next"], conditional_map)
    # Finally, add entrypoint
    workflow.set_entry_point("supervisor")
    
    graph = workflow.compile()

    for s in graph.stream(
        {
            "messages": [
                HumanMessage(content="Code hello world and print it to the terminal")
            ]
        }
    ):
        if "__end__" not in s:
            print(s)
            print("----")
        
    return "DONE"