|
import gradio as gr |
|
import os |
|
|
|
from rag_langgraph import run_multi_agent |
|
|
|
os.environ["LANGCHAIN_TRACING_V2"] = "true" |
|
os.environ["LANGCHAIN_PROJECT"] = "langgraph-multi-agent" |
|
|
|
def invoke(openai_api_key, topic, word_count=1000): |
|
if (openai_api_key == ""): |
|
raise gr.Error("OpenAI API Key is required.") |
|
if (topic == ""): |
|
raise gr.Error("Topic is required.") |
|
|
|
os.environ["OPENAI_API_KEY"] = openai_api_key |
|
|
|
return run_multi_agent(topic, word_count) |
|
|
|
gr.close_all() |
|
|
|
demo = gr.Interface(fn = invoke, |
|
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1), |
|
gr.Textbox(label = "Topic", value=os.environ["TOPIC"], lines = 1), |
|
gr.Number(label = "Word Count", value=1000, minimum=500, maximum=5000)], |
|
outputs = [gr.Markdown(label = "Generated Blog Post", value=os.environ["OUTPUT"])], |
|
title = "Multi-Agent RAG: Blog Post Generation", |
|
description = os.environ["DESCRIPTION"]) |
|
|
|
demo.launch() |