Update rag_langgraph.py
Browse files- rag_langgraph.py +21 -33
rag_langgraph.py
CHANGED
@@ -18,13 +18,16 @@ import functools
|
|
18 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
19 |
from langgraph.graph import StateGraph, END
|
20 |
|
|
|
|
|
|
|
|
|
21 |
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
|
22 |
-
# Each worker node will be given a name and some tools.
|
23 |
prompt = ChatPromptTemplate.from_messages(
|
24 |
[
|
25 |
(
|
26 |
-
"system",
|
27 |
-
system_prompt
|
28 |
),
|
29 |
MessagesPlaceholder(variable_name="messages"),
|
30 |
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
@@ -38,30 +41,21 @@ def agent_node(state, agent, name):
|
|
38 |
result = agent.invoke(state)
|
39 |
return {"messages": [HumanMessage(content=result["output"], name=name)]}
|
40 |
|
41 |
-
# The agent state is the input to each node in the graph
|
42 |
-
class AgentState(TypedDict):
|
43 |
-
# The annotation tells the graph that new messages will always
|
44 |
-
# be added to the current states
|
45 |
-
messages: Annotated[Sequence[BaseMessage], operator.add]
|
46 |
-
# The 'next' field indicates where to route to next
|
47 |
-
next: str
|
48 |
-
|
49 |
def create_graph(topic, word_count):
|
50 |
-
tavily_tool = TavilySearchResults(max_results=
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
system_prompt = (
|
55 |
"You are a supervisor tasked with managing a conversation between the"
|
56 |
-
" following workers:
|
57 |
" respond with the worker to act next. Each worker will perform a"
|
58 |
" task and respond with their results and status. When finished,"
|
59 |
" respond with FINISH."
|
60 |
)
|
61 |
-
|
62 |
-
# and decides when the work is completed
|
63 |
options = ["FINISH"] + members
|
64 |
-
|
65 |
function_def = {
|
66 |
"name": "route",
|
67 |
"description": "Select the next role.",
|
@@ -79,6 +73,7 @@ def create_graph(topic, word_count):
|
|
79 |
"required": ["next"],
|
80 |
},
|
81 |
}
|
|
|
82 |
prompt = ChatPromptTemplate.from_messages(
|
83 |
[
|
84 |
("system", system_prompt),
|
@@ -99,31 +94,24 @@ def create_graph(topic, word_count):
|
|
99 |
| JsonOutputFunctionsParser()
|
100 |
)
|
101 |
|
102 |
-
research_agent = create_agent(llm, [tavily_tool], "
|
103 |
research_node = functools.partial(agent_node, agent=research_agent, name="Researcher")
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
llm,
|
108 |
-
[python_repl_tool],
|
109 |
-
"You may generate safe python code to analyze data and generate charts using matplotlib.",
|
110 |
-
)
|
111 |
-
code_node = functools.partial(agent_node, agent=code_agent, name="Coder")
|
112 |
|
113 |
workflow = StateGraph(AgentState)
|
114 |
workflow.add_node("Researcher", research_node)
|
115 |
-
workflow.add_node("
|
116 |
workflow.add_node("supervisor", supervisor_chain)
|
117 |
|
118 |
for member in members:
|
119 |
-
# We want our workers to ALWAYS "report back" to the supervisor when done
|
120 |
workflow.add_edge(member, "supervisor")
|
121 |
-
|
122 |
-
# which routes to a node or finishes
|
123 |
conditional_map = {k: k for k in members}
|
124 |
conditional_map["FINISH"] = END
|
|
|
125 |
workflow.add_conditional_edges("supervisor", lambda x: x["next"], conditional_map)
|
126 |
-
# Finally, add entrypoint
|
127 |
workflow.set_entry_point("supervisor")
|
128 |
|
129 |
return workflow.compile()
|
@@ -132,6 +120,6 @@ def run_multi_agent(topic, word_count):
|
|
132 |
graph = create_graph(topic, word_count)
|
133 |
result = graph.invoke({
|
134 |
"messages": [
|
135 |
-
HumanMessage(content="
|
136 |
]
|
137 |
})
|
|
|
18 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
19 |
from langgraph.graph import StateGraph, END
|
20 |
|
21 |
+
class AgentState(TypedDict):
|
22 |
+
messages: Annotated[Sequence[BaseMessage], operator.add]
|
23 |
+
next: str
|
24 |
+
|
25 |
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
|
|
|
26 |
prompt = ChatPromptTemplate.from_messages(
|
27 |
[
|
28 |
(
|
29 |
+
"system",
|
30 |
+
system_prompt
|
31 |
),
|
32 |
MessagesPlaceholder(variable_name="messages"),
|
33 |
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
|
|
41 |
result = agent.invoke(state)
|
42 |
return {"messages": [HumanMessage(content=result["output"], name=name)]}
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def create_graph(topic, word_count):
|
45 |
+
tavily_tool = TavilySearchResults(max_results=10)
|
46 |
+
|
47 |
+
members = ["Researcher", "Blogger"]
|
48 |
+
|
49 |
system_prompt = (
|
50 |
"You are a supervisor tasked with managing a conversation between the"
|
51 |
+
" following workers: {members}. Given the following user request,"
|
52 |
" respond with the worker to act next. Each worker will perform a"
|
53 |
" task and respond with their results and status. When finished,"
|
54 |
" respond with FINISH."
|
55 |
)
|
56 |
+
|
|
|
57 |
options = ["FINISH"] + members
|
58 |
+
|
59 |
function_def = {
|
60 |
"name": "route",
|
61 |
"description": "Select the next role.",
|
|
|
73 |
"required": ["next"],
|
74 |
},
|
75 |
}
|
76 |
+
|
77 |
prompt = ChatPromptTemplate.from_messages(
|
78 |
[
|
79 |
("system", system_prompt),
|
|
|
94 |
| JsonOutputFunctionsParser()
|
95 |
)
|
96 |
|
97 |
+
research_agent = create_agent(llm, [tavily_tool], "Research content on topic {topic}")
|
98 |
research_node = functools.partial(agent_node, agent=research_agent, name="Researcher")
|
99 |
|
100 |
+
blogger_agent = create_agent(llm, [], "Write a {word_count}-word blog post on topic {topic}")
|
101 |
+
blogger_node = functools.partial(agent_node, agent=code_agent, name="Blogger")
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
workflow = StateGraph(AgentState)
|
104 |
workflow.add_node("Researcher", research_node)
|
105 |
+
workflow.add_node("Blogger", blogger_node)
|
106 |
workflow.add_node("supervisor", supervisor_chain)
|
107 |
|
108 |
for member in members:
|
|
|
109 |
workflow.add_edge(member, "supervisor")
|
110 |
+
|
|
|
111 |
conditional_map = {k: k for k in members}
|
112 |
conditional_map["FINISH"] = END
|
113 |
+
|
114 |
workflow.add_conditional_edges("supervisor", lambda x: x["next"], conditional_map)
|
|
|
115 |
workflow.set_entry_point("supervisor")
|
116 |
|
117 |
return workflow.compile()
|
|
|
120 |
graph = create_graph(topic, word_count)
|
121 |
result = graph.invoke({
|
122 |
"messages": [
|
123 |
+
HumanMessage(content="Evolution of Retrieval-Augmented Generation from Naive RAG to Agentic RAG")
|
124 |
]
|
125 |
})
|