Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,153 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
3 |
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def invoke(openai_api_key, topic, word_count=500):
|
9 |
if (openai_api_key == ""):
|
@@ -15,8 +159,16 @@ def invoke(openai_api_key, topic, word_count=500):
|
|
15 |
|
16 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
return result
|
22 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import getpass
|
3 |
+
import os
|
4 |
|
5 |
+
def _set_if_undefined(var: str):
|
6 |
+
if not os.environ.get(var):
|
7 |
+
os.environ[var] = getpass.getpass(f"Please provide your {var}")
|
8 |
|
9 |
+
_set_if_undefined("OPENAI_API_KEY")
|
10 |
+
_set_if_undefined("LANGCHAIN_API_KEY")
|
11 |
+
_set_if_undefined("TAVILY_API_KEY")
|
12 |
+
|
13 |
+
# Optional, add tracing in LangSmith
|
14 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
15 |
+
os.environ["LANGCHAIN_PROJECT"] = "Multi-agent Collaboration"
|
16 |
+
|
17 |
+
from typing import Annotated, List, Tuple, Union
|
18 |
+
|
19 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
20 |
+
from langchain_core.tools import tool
|
21 |
+
from langchain_experimental.tools import PythonREPLTool
|
22 |
+
|
23 |
+
tavily_tool = TavilySearchResults(max_results=5)
|
24 |
+
|
25 |
+
# This executes code locally, which can be unsafe
|
26 |
+
python_repl_tool = PythonREPLTool()
|
27 |
+
|
28 |
+
from langchain.agents import AgentExecutor, create_openai_tools_agent
|
29 |
+
from langchain_core.messages import BaseMessage, HumanMessage
|
30 |
+
from langchain_openai import ChatOpenAI
|
31 |
+
|
32 |
+
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
|
33 |
+
# Each worker node will be given a name and some tools.
|
34 |
+
prompt = ChatPromptTemplate.from_messages(
|
35 |
+
[
|
36 |
+
(
|
37 |
+
"system",
|
38 |
+
system_prompt,
|
39 |
+
),
|
40 |
+
MessagesPlaceholder(variable_name="messages"),
|
41 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
42 |
+
]
|
43 |
+
)
|
44 |
+
agent = create_openai_tools_agent(llm, tools, prompt)
|
45 |
+
executor = AgentExecutor(agent=agent, tools=tools)
|
46 |
+
return executor
|
47 |
+
|
48 |
+
def agent_node(state, agent, name):
|
49 |
+
result = agent.invoke(state)
|
50 |
+
return {"messages": [HumanMessage(content=result["output"], name=name)]}
|
51 |
+
|
52 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
53 |
+
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
|
54 |
+
|
55 |
+
members = ["Researcher", "Coder"]
|
56 |
+
system_prompt = (
|
57 |
+
"You are a supervisor tasked with managing a conversation between the"
|
58 |
+
" following workers: {members}. Given the following user request,"
|
59 |
+
" respond with the worker to act next. Each worker will perform a"
|
60 |
+
" task and respond with their results and status. When finished,"
|
61 |
+
" respond with FINISH."
|
62 |
+
)
|
63 |
+
# Our team supervisor is an LLM node. It just picks the next agent to process
|
64 |
+
# and decides when the work is completed
|
65 |
+
options = ["FINISH"] + members
|
66 |
+
# Using openai function calling can make output parsing easier for us
|
67 |
+
function_def = {
|
68 |
+
"name": "route",
|
69 |
+
"description": "Select the next role.",
|
70 |
+
"parameters": {
|
71 |
+
"title": "routeSchema",
|
72 |
+
"type": "object",
|
73 |
+
"properties": {
|
74 |
+
"next": {
|
75 |
+
"title": "Next",
|
76 |
+
"anyOf": [
|
77 |
+
{"enum": options},
|
78 |
+
],
|
79 |
+
}
|
80 |
+
},
|
81 |
+
"required": ["next"],
|
82 |
+
},
|
83 |
+
}
|
84 |
+
prompt = ChatPromptTemplate.from_messages(
|
85 |
+
[
|
86 |
+
("system", system_prompt),
|
87 |
+
MessagesPlaceholder(variable_name="messages"),
|
88 |
+
(
|
89 |
+
"system",
|
90 |
+
"Given the conversation above, who should act next?"
|
91 |
+
" Or should we FINISH? Select one of: {options}",
|
92 |
+
),
|
93 |
+
]
|
94 |
+
).partial(options=str(options), members=", ".join(members))
|
95 |
+
|
96 |
+
llm = ChatOpenAI(model="gpt-4-1106-preview")
|
97 |
+
|
98 |
+
supervisor_chain = (
|
99 |
+
prompt
|
100 |
+
| llm.bind_functions(functions=[function_def], function_call="route")
|
101 |
+
| JsonOutputFunctionsParser()
|
102 |
+
)
|
103 |
+
|
104 |
+
import operator
|
105 |
+
from typing import Annotated, Any, Dict, List, Optional, Sequence, TypedDict
|
106 |
+
import functools
|
107 |
+
|
108 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
109 |
+
from langgraph.graph import StateGraph, END
|
110 |
+
|
111 |
+
|
112 |
+
# The agent state is the input to each node in the graph
|
113 |
+
class AgentState(TypedDict):
|
114 |
+
# The annotation tells the graph that new messages will always
|
115 |
+
# be added to the current states
|
116 |
+
messages: Annotated[Sequence[BaseMessage], operator.add]
|
117 |
+
# The 'next' field indicates where to route to next
|
118 |
+
next: str
|
119 |
+
|
120 |
+
|
121 |
+
research_agent = create_agent(llm, [tavily_tool], "You are a web researcher.")
|
122 |
+
research_node = functools.partial(agent_node, agent=research_agent, name="Researcher")
|
123 |
+
|
124 |
+
# NOTE: THIS PERFORMS ARBITRARY CODE EXECUTION. PROCEED WITH CAUTION
|
125 |
+
code_agent = create_agent(
|
126 |
+
llm,
|
127 |
+
[python_repl_tool],
|
128 |
+
"You may generate safe python code to analyze data and generate charts using matplotlib.",
|
129 |
+
)
|
130 |
+
code_node = functools.partial(agent_node, agent=code_agent, name="Coder")
|
131 |
+
|
132 |
+
workflow = StateGraph(AgentState)
|
133 |
+
workflow.add_node("Researcher", research_node)
|
134 |
+
workflow.add_node("Coder", code_node)
|
135 |
+
workflow.add_node("supervisor", supervisor_chain)
|
136 |
+
|
137 |
+
for member in members:
|
138 |
+
# We want our workers to ALWAYS "report back" to the supervisor when done
|
139 |
+
workflow.add_edge(member, "supervisor")
|
140 |
+
# The supervisor populates the "next" field in the graph state
|
141 |
+
# which routes to a node or finishes
|
142 |
+
conditional_map = {k: k for k in members}
|
143 |
+
conditional_map["FINISH"] = END
|
144 |
+
workflow.add_conditional_edges("supervisor", lambda x: x["next"], conditional_map)
|
145 |
+
# Finally, add entrypoint
|
146 |
+
workflow.set_entry_point("supervisor")
|
147 |
+
|
148 |
+
graph = workflow.compile()
|
149 |
+
|
150 |
+
###
|
151 |
|
152 |
def invoke(openai_api_key, topic, word_count=500):
|
153 |
if (openai_api_key == ""):
|
|
|
159 |
|
160 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
161 |
|
162 |
+
for s in graph.stream(
|
163 |
+
{
|
164 |
+
"messages": [
|
165 |
+
HumanMessage(content="Code hello world and print it to the terminal")
|
166 |
+
]
|
167 |
+
}
|
168 |
+
):
|
169 |
+
if "__end__" not in s:
|
170 |
+
print(s)
|
171 |
+
print("----")
|
172 |
|
173 |
return result
|
174 |
|