import gradio as gr import os from rag_langgraph import run_multi_agent os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_PROJECT"] = "langgraph-multi-agent" def invoke(openai_api_key, topic, word_count=1000): if (openai_api_key == ""): raise gr.Error("OpenAI API Key is required.") if (topic == ""): raise gr.Error("Topic is required.") os.environ["OPENAI_API_KEY"] = openai_api_key return run_multi_agent(topic, word_count) gr.close_all() demo = gr.Interface(fn = invoke, inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1), gr.Textbox(label = "Topic", value=os.environ["TOPIC"], lines = 1), gr.Number(label = "Word Count", value=1000, minimum=500, maximum=5000)], outputs = [gr.Textbox(label = "Generated Blog Post", value=os.environ["OUTPUT"])], title = "Multi-Agent RAG: Blog Post Generation", description = os.environ["DESCRIPTION"]) demo.launch()