File size: 6,854 Bytes
7978a78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os

import gradio as gr

from utils import *


with gr.Blocks(title='LEO Demo') as demo:
    gr.HTML(value="<h1 align='center'>An Embodied Generalist Agent in 3D World</h1>")
    gr.HTML(value="<div align='center' style='margin-top:-1em; margin-bottom:-1em;'><img src='/file=assets/leo.svg' width='4%'></div>")
    # gr.HTML(value="<img src='/file=assets/teaser.png' alt='Teaser' width='760px' style='display: block; margin: auto;'>")
    gr.HTML(value="<p align='center' style='font-size: 1.2em; color: #485fc7;'><a href='https://arxiv.org/abs/2311.12871' target='_blank'>arXiv</a> | <a href='https://embodied-generalist.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/embodied-generalist/embodied-generalist' target='_blank'>Code</a></p>")
    gr.HTML(value="<p align='center' style='font-size: 1.15em;'><i>LEO: an embodied generalist agent capable of perceiving, grounding, reasoning, planning, and acting in 3D world.</i></p>")

    with gr.Row():
        with gr.Column(scale=5):
            dropdown_scene = gr.Dropdown(
                choices=MESH_NAMES,
                value=MESH_NAMES[0],
                interactive=True,
                label='Select a 3D scene',
            )
            model_3d = gr.Model3D(
                value=os.path.join(MESH_DIR, f'{MESH_NAMES[0]}.glb'),
                clear_color=[0.0, 0.0, 0.0, 0.0],
                label='3D Scene',
                camera_position=(90, 30, 10),
                height=659,
            )
            gr.HTML(
                """<center><strong>
                πŸ‘† SCROLL and DRAG on the 3D Scene
                to zoom in/out and rotate. Press CTRL and DRAG to pan.
                </strong></center>
                """
            )
        with gr.Column(scale=5):
            dropdown_conversation_mode = gr.Dropdown(
                choices=['Single-round mode', 'Multi-round mode'],
                value='Single-round mode',
                interactive=True,
                label='Select conversation mode',
            )
            chatbot = gr.Chatbot(label='Chat with LEO')
            with gr.Row():
                with gr.Column(scale=8):
                    user_chat_input = gr.Textbox(
                        placeholder="Enter text here to chat with LEO",
                        show_label=False,
                        autofocus=True,
                    )
                with gr.Column(scale=2, min_width=0):
                    send_button = gr.Button('Send', variant='primary', scale=2)
            with gr.Row():
                upvote_button = gr.Button(value='πŸ‘ Upvote', interactive=False)
                downvote_button = gr.Button(value='πŸ‘Ž Downvote', interactive=False)
                flag_button = gr.Button(value='⚠️ Flag', interactive=False)
                clear_button = gr.Button(value='πŸ—‘οΈ Clear', interactive=False)
            with gr.Row():
                with gr.Accordion(label="Examples for user instruction:", open=True):
                    gr.Examples(
                        examples=[
                            ["How many armchairs are there in this room?"],
                            ["Is there a radio in the room?"],
                            ["Where is the wardrobe located?TODO"],
                            ["What is the shape of the shelf in front of the picture?TODO"],
                            ["Plan for the task: Tidy up and arrange the nursery room.TODO"],
                       ],
                        inputs=user_chat_input,
                    )

    # generation_config
    with gr.Accordion('Parameters', open=False):
        repetition_penalty = gr.Slider(
            minimum=0.0,
            maximum=10.0,
            value=3.0,
            step=1.0,
            interactive=True,
            label='Repetition penalty',
        )
        length_penalty = gr.Slider(
            minimum=0.0,
            maximum=10.0,
            value=1.0,
            step=1.0,
            interactive=True,
            label="Length penalty",
        )
    gr.Markdown("### Terms of Service")
    gr.HTML(
        """By using this service, users are required to agree to the following terms:
           the service is a research preview intended for non-commercial use only
           and may collect user dialogue data for future research."""
    )
    gr.Markdown("### Acknowledgment")
    gr.HTML(
        """Template adapted from <a href="https://llava.hliu.cc/">LLaVA</a> and
           <a href="http://sled-whistler.eecs.umich.edu:7777/">LLM-Grounder</a>."""
    )

    # Event handling
    button_list = [upvote_button, downvote_button, flag_button, clear_button]

    dropdown_scene.change(
        fn=change_scene,
        inputs=[dropdown_scene],
        outputs=[model_3d, chatbot],
        queue=False,
    )

    dropdown_conversation_mode.change(
        fn=clear_history,
        inputs=[],
        outputs=[chatbot, user_chat_input] + button_list,
        queue=False,
    )

    user_chat_input.submit(
        fn=receive_instruction,
        inputs=[chatbot, user_chat_input],
        outputs=[chatbot, user_chat_input, send_button] + button_list,
        queue=False,
    ).then(
        fn=generate_response,
        inputs=[
            chatbot,
            dropdown_scene,
            dropdown_conversation_mode,
            repetition_penalty,
            length_penalty,
        ],
        outputs=[chatbot, send_button] + button_list,
        scroll_to_output=True,
    )

    send_button.click(
        fn=receive_instruction,
        inputs=[chatbot, user_chat_input],
        outputs=[chatbot, user_chat_input, send_button] + button_list,
        queue=False,
    ).then(
        fn=generate_response,
        inputs=[
            chatbot,
            dropdown_scene,
            dropdown_conversation_mode,
            repetition_penalty,
            length_penalty,
        ],
        outputs=[chatbot, send_button] + button_list,
        scroll_to_output=True,
    )

    upvote_button.click(
        upvote_response,
        [chatbot, dropdown_scene, dropdown_conversation_mode],
        [user_chat_input, upvote_button, downvote_button, flag_button],
        queue=False,
    )
    downvote_button.click(
        downvote_response,
        [chatbot, dropdown_scene, dropdown_conversation_mode],
        [user_chat_input, upvote_button, downvote_button, flag_button],
        queue=False,
    )
    flag_button.click(
        flag_response,
        [chatbot, dropdown_scene, dropdown_conversation_mode],
        [user_chat_input, upvote_button, downvote_button, flag_button],
        queue=False,
    )
    clear_button.click(
        fn=clear_history,
        inputs=[],
        outputs=[chatbot, user_chat_input] + button_list,
        queue=False,
    )


demo.queue().launch(share=True, allowed_paths=['assets'])