Spaces:
Runtime error
Runtime error
emilylearning
commited on
Commit
•
bd64c46
1
Parent(s):
a138a7b
first commit
Browse files
app.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
# Play with me, consts
|
10 |
+
CONDITIONING_VARIABLES = ["none", "birth_place", "birth_date", "name"]
|
11 |
+
FEMALE_WEIGHTS = [1.5, 5] # About 5x more male than female tokens in dataset
|
12 |
+
|
13 |
+
# Internal consts
|
14 |
+
START_YEAR = 1800
|
15 |
+
STOP_YEAR = 1999
|
16 |
+
SPLIT_KEY = "DATE"
|
17 |
+
|
18 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
MAX_TOKEN_LENGTH = 128
|
21 |
+
NON_LOSS_TOKEN_ID = -100
|
22 |
+
NON_GENDERED_TOKEN_ID = 30 # Picked an int that will pop out visually
|
23 |
+
LABEL_DICT = {"female": 9, "male": -9} # Picked an int that will pop out visually
|
24 |
+
CLASSES = list(LABEL_DICT.keys())
|
25 |
+
|
26 |
+
|
27 |
+
# Fire up the models
|
28 |
+
models_paths = dict()
|
29 |
+
models = dict()
|
30 |
+
|
31 |
+
base_path = "emilylearning/"
|
32 |
+
for var in CONDITIONING_VARIABLES:
|
33 |
+
for f_weight in FEMALE_WEIGHTS:
|
34 |
+
if f_weight == 1.5:
|
35 |
+
models_paths[(var, f_weight)] = (
|
36 |
+
base_path
|
37 |
+
+ f"finetuned_cgp_added_{var}__female_weight_{f_weight}__test_run_False__p_dataset_100"
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
models_paths[(var, f_weight)] = (
|
41 |
+
base_path
|
42 |
+
+ f"finetuned_cgp_add_{var}__f_weight_{f_weight}__p_dataset_100__test_False"
|
43 |
+
)
|
44 |
+
models[(var, f_weight)] = AutoModelForTokenClassification.from_pretrained(
|
45 |
+
models_paths[(var, f_weight)]
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
# Tokenizers same for each model, so just grabbing one of them
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
51 |
+
models_paths[(CONDITIONING_VARIABLES[0], FEMALE_WEIGHTS[0])], add_prefix_space=True
|
52 |
+
)
|
53 |
+
MASK_TOKEN_ID = tokenizer.mask_token_id
|
54 |
+
|
55 |
+
|
56 |
+
# more static stuff
|
57 |
+
gendered_lists = [
|
58 |
+
["he", "she"],
|
59 |
+
["him", "her"],
|
60 |
+
["his", "hers"],
|
61 |
+
["male", "female"],
|
62 |
+
["man", "woman"],
|
63 |
+
["men", "women"],
|
64 |
+
["husband", "wife"],
|
65 |
+
]
|
66 |
+
male_gendered_dict = {list[0]: list for list in gendered_lists}
|
67 |
+
female_gendered_dict = {list[1]: list for list in gendered_lists}
|
68 |
+
|
69 |
+
male_gendered_token_ids = tokenizer.convert_tokens_to_ids(
|
70 |
+
list(male_gendered_dict.keys())
|
71 |
+
)
|
72 |
+
female_gendered_token_ids = tokenizer.convert_tokens_to_ids(
|
73 |
+
list(female_gendered_dict.keys())
|
74 |
+
)
|
75 |
+
assert tokenizer.unk_token_id not in male_gendered_token_ids
|
76 |
+
assert tokenizer.unk_token_id not in female_gendered_token_ids
|
77 |
+
|
78 |
+
label_list = list(LABEL_DICT.values())
|
79 |
+
assert label_list[0] == LABEL_DICT["female"], "LABEL_DICT not an ordered dict"
|
80 |
+
|
81 |
+
label2id = {label: idx for idx, label in enumerate(label_list)}
|
82 |
+
|
83 |
+
# Prepare text
|
84 |
+
def tokenize_and_append_metadata(text, tokenizer):
|
85 |
+
tokenized = tokenizer(
|
86 |
+
text,
|
87 |
+
truncation=True,
|
88 |
+
padding=True,
|
89 |
+
max_length=MAX_TOKEN_LENGTH,
|
90 |
+
)
|
91 |
+
|
92 |
+
# Finding the gender pronouns in the tokens
|
93 |
+
token_ids = tokenized["input_ids"]
|
94 |
+
female_tags = torch.tensor(
|
95 |
+
[
|
96 |
+
LABEL_DICT["female"]
|
97 |
+
if id in female_gendered_token_ids
|
98 |
+
else NON_GENDERED_TOKEN_ID
|
99 |
+
for id in token_ids
|
100 |
+
]
|
101 |
+
)
|
102 |
+
male_tags = torch.tensor(
|
103 |
+
[
|
104 |
+
LABEL_DICT["male"]
|
105 |
+
if id in male_gendered_token_ids
|
106 |
+
else NON_GENDERED_TOKEN_ID
|
107 |
+
for id in token_ids
|
108 |
+
]
|
109 |
+
)
|
110 |
+
|
111 |
+
# Labeling and masking out occurrences of gendered pronouns
|
112 |
+
labels = torch.tensor([NON_LOSS_TOKEN_ID] * len(token_ids))
|
113 |
+
labels = torch.where(
|
114 |
+
female_tags == LABEL_DICT["female"],
|
115 |
+
label2id[LABEL_DICT["female"]],
|
116 |
+
NON_LOSS_TOKEN_ID,
|
117 |
+
)
|
118 |
+
labels = torch.where(
|
119 |
+
male_tags == LABEL_DICT["male"], label2id[LABEL_DICT["male"]], labels
|
120 |
+
)
|
121 |
+
masked_token_ids = torch.where(
|
122 |
+
female_tags == LABEL_DICT["female"], MASK_TOKEN_ID, torch.tensor(token_ids)
|
123 |
+
)
|
124 |
+
masked_token_ids = torch.where(
|
125 |
+
male_tags == LABEL_DICT["male"], MASK_TOKEN_ID, masked_token_ids
|
126 |
+
)
|
127 |
+
|
128 |
+
tokenized["input_ids"] = masked_token_ids
|
129 |
+
tokenized["labels"] = labels
|
130 |
+
|
131 |
+
return tokenized
|
132 |
+
|
133 |
+
|
134 |
+
# Run inference
|
135 |
+
def predict_gender_pronouns(
|
136 |
+
num_points, conditioning_variables, f_weights, input_text, return_preds=False
|
137 |
+
):
|
138 |
+
|
139 |
+
text_portions = input_text.split(SPLIT_KEY)
|
140 |
+
|
141 |
+
years = np.linspace(START_YEAR, STOP_YEAR, int(num_points)).astype(int)
|
142 |
+
|
143 |
+
dfs = []
|
144 |
+
dfs.append(pd.DataFrame({"year": years}))
|
145 |
+
for f_weight in f_weights:
|
146 |
+
for var in conditioning_variables:
|
147 |
+
prefix = f"w{f_weight}_{var}"
|
148 |
+
model = models[(var, f_weight)]
|
149 |
+
|
150 |
+
p_female = []
|
151 |
+
p_male = []
|
152 |
+
for b_date in years:
|
153 |
+
target_text = f"{b_date}".join(text_portions)
|
154 |
+
tokenized_sample = tokenize_and_append_metadata(
|
155 |
+
target_text,
|
156 |
+
tokenizer=tokenizer,
|
157 |
+
)
|
158 |
+
|
159 |
+
ids = tokenized_sample["input_ids"]
|
160 |
+
atten_mask = torch.tensor(tokenized_sample["attention_mask"])
|
161 |
+
toks = tokenizer.convert_ids_to_tokens(ids)
|
162 |
+
labels = tokenized_sample["labels"]
|
163 |
+
|
164 |
+
with torch.no_grad():
|
165 |
+
outputs = model(ids.unsqueeze(dim=0), atten_mask.unsqueeze(dim=0))
|
166 |
+
preds = torch.argmax(outputs[0][0].cpu(), dim=1)
|
167 |
+
|
168 |
+
was_masked = labels.cpu() != -100
|
169 |
+
preds = torch.where(was_masked, preds, -100)
|
170 |
+
num_preds = torch.sum(was_masked).item()
|
171 |
+
|
172 |
+
p_female.append(len(torch.where(preds==0)[0])/num_preds*100)
|
173 |
+
p_male.append(len(torch.where(preds==1)[0])/num_preds*100)
|
174 |
+
|
175 |
+
dfs.append(pd.DataFrame({f"%f_{prefix}": p_female, f"%m_{prefix}": p_male}))
|
176 |
+
|
177 |
+
results = pd.concat(dfs, axis=1).set_index("year")
|
178 |
+
|
179 |
+
female_df = results.filter(regex=".*f_")
|
180 |
+
female_df_for_plot = (
|
181 |
+
female_df.reset_index()
|
182 |
+
) # Gradio timeseries requires x-axis as column?
|
183 |
+
|
184 |
+
male_df = results.filter(regex=".*m_")
|
185 |
+
male_df_for_plot = (
|
186 |
+
male_df.reset_index()
|
187 |
+
) # Gradio timeseries requires x-axis as column?
|
188 |
+
|
189 |
+
return (
|
190 |
+
target_text,
|
191 |
+
female_df_for_plot,
|
192 |
+
female_df,
|
193 |
+
male_df_for_plot,
|
194 |
+
male_df,
|
195 |
+
)
|
196 |
+
|
197 |
+
|
198 |
+
title = "Changing Gender Pronouns"
|
199 |
+
description = """
|
200 |
+
This is a demo for a project exploring possible spurious correlations in training datasets that can be exploited and manipulated to achieve alternative outcomes. In this case, manipulating `DATE` to change the predicted gender pronouns for both the BERT base model and a model fine-tuned with a specific pronoun predicting task using the [wiki-bio](https://huggingface.co/datasets/wiki_bio) dataset.
|
201 |
+
One way to explain phenomena is by looking at a likely data generating process for biographical-like data in both the main BERT training dataset as well as the `wiki_bio` dataset, in the form of a causal DAG.
|
202 |
+
|
203 |
+
In the DAG, we can see that `birth_place`, `birth_date` and `gender` are all independent elements that have no common cause with the other covariates in the DAG. However `birth_place`, `birth_date` and `gender` may all have a role in causing one's `access_to_resources`, with the general trend that `access_to_resources` has become less gender-dependent over time, but not in every `birth_place`, with recent events in Afghanistan providing a stark counterexample to this trend. `access_to_resources` further determines how or if at all, you may appear in the dataset’s `context_words`.
|
204 |
+
|
205 |
+
We also argue that although there are complex causal interactions between words in a segment, the `context_words` are more likely to cause the `gender_pronouns`, rather than vice versa. For example, if the subject is a famous doctor and the object is her wealthy father, these context words will determine which person is being referred to, and thus which gendered-pronoun to use.
|
206 |
+
|
207 |
+
|
208 |
+
In this graph, any pink path between `context_words` and `gender_pronouns` will allow the flow of statistical correlation (regardless of direction of the causal arrow), inviting confounding and thus spurious correlations into the trained model.
|
209 |
+
|
210 |
+
<center>
|
211 |
+
<img src="https://www.dropbox.com/s/x60r43h7uwztnru/generic_ds_dag.png?raw=1"
|
212 |
+
alt="DAG of possible data generating process for datasets used in training.">
|
213 |
+
</center>
|
214 |
+
|
215 |
+
Those familiar with causal DAGs may note when can simply condition on `gender` to block any confounding between the `context_words` and the `gender_pronouns`. However, this is not always possible, particularly in generative or mask-filling tasks, like those common in language models.
|
216 |
+
|
217 |
+
Here, we automatically mask (for prediction) the following tokens (and they will also be automatically masked if you use them below.)
|
218 |
+
```
|
219 |
+
gendered_lists = [
|
220 |
+
['he', 'she'],
|
221 |
+
['him', 'her'],
|
222 |
+
['his', 'hers'],
|
223 |
+
['male', 'female'],
|
224 |
+
['man', 'woman'],
|
225 |
+
['men', 'women'],
|
226 |
+
["husband", "wife"],
|
227 |
+
]
|
228 |
+
```
|
229 |
+
|
230 |
+
In this demo we are looking for a dose-response relationship between:
|
231 |
+
- our treatment: the text,
|
232 |
+
- and our outcome: the predicted gender of pronouns in the text.
|
233 |
+
|
234 |
+
Specifically we are seeing if making larger magnitude intervention: an older `DATE` in the text will result in a larger magnitude effect in the outcome: higher percentage of predicted female pronouns.
|
235 |
+
|
236 |
+
In the demo below you can select among 4 different fine-tuning methods:
|
237 |
+
- which, if any, conditioning variable was appended to the text.
|
238 |
+
|
239 |
+
And two different weighting schemes that were used in the loss function to nudge more toward the minority class in the dataset:
|
240 |
+
- female pronouns.
|
241 |
+
|
242 |
+
"""
|
243 |
+
|
244 |
+
|
245 |
+
article = "Check out [main colab notebook](https://colab.research.google.com/drive/14ce4KD6PrCIL60Eng-t79tEI1UP-DHGz?usp=sharing#scrollTo=Mg1tUeHLRLaG) \
|
246 |
+
with a lot more details about this method and implementation."
|
247 |
+
|
248 |
+
gr.Interface(
|
249 |
+
fn=predict_gender_pronouns,
|
250 |
+
inputs=[
|
251 |
+
gr.inputs.Number(
|
252 |
+
default=10,
|
253 |
+
label="Number of points (years) plotted -- select fewer if slow.",
|
254 |
+
),
|
255 |
+
gr.inputs.CheckboxGroup(
|
256 |
+
CONDITIONING_VARIABLES,
|
257 |
+
default=["none", "birth_date"],
|
258 |
+
type="value",
|
259 |
+
label="Pick model(s) that were trained with the following conditioning variables",
|
260 |
+
),
|
261 |
+
gr.inputs.CheckboxGroup(
|
262 |
+
FEMALE_WEIGHTS,
|
263 |
+
default=[5],
|
264 |
+
type="value",
|
265 |
+
label="Pick model(s) that were trained with the following loss function weight on female predictions",
|
266 |
+
),
|
267 |
+
gr.inputs.Textbox(
|
268 |
+
lines=7,
|
269 |
+
label="Input Text. Include one of more instance of the word 'DATE' below, to be replace with a range of dates in demo.",
|
270 |
+
default="Born DATE, she was a computer scientist. Her work was greatly respected, and she was well-regarded in her field.",
|
271 |
+
),
|
272 |
+
],
|
273 |
+
outputs=[
|
274 |
+
gr.outputs.Textbox(type="auto", label="Sample target text fed to model"),
|
275 |
+
gr.outputs.Timeseries(
|
276 |
+
x="year",
|
277 |
+
label="Precent pred female pronoun vs year, per model trained with conditioning and with weight for female preds",
|
278 |
+
),
|
279 |
+
gr.outputs.Dataframe(
|
280 |
+
overflow_row_behaviour="show_ends",
|
281 |
+
label="Precent pred female pronoun vs year, per model trained with conditioning and with weight for female preds",
|
282 |
+
),
|
283 |
+
gr.outputs.Timeseries(
|
284 |
+
x="year",
|
285 |
+
label="Precent pred male pronoun vs year, per model trained with conditioning and with weight for female preds",
|
286 |
+
),
|
287 |
+
gr.outputs.Dataframe(
|
288 |
+
overflow_row_behaviour="show_ends",
|
289 |
+
label="Precent pred male pronoun vs year, per model trained with conditioning and with weight for female preds",
|
290 |
+
),
|
291 |
+
],
|
292 |
+
title = title,
|
293 |
+
description = description,
|
294 |
+
article = article
|
295 |
+
).launch()
|