|
import gradio as gr |
|
import torch |
|
import soundfile as sf |
|
import spaces |
|
import os |
|
import numpy as np |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
from speechbrain.pretrained import EncoderClassifier |
|
from datasets import load_dataset |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def load_models_and_data(): |
|
model_name = "microsoft/speecht5_tts" |
|
processor = SpeechT5Processor.from_pretrained(model_name) |
|
model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr").to(device) |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) |
|
|
|
spk_model_name = "speechbrain/spkrec-xvect-voxceleb" |
|
speaker_model = EncoderClassifier.from_hparams( |
|
source=spk_model_name, |
|
run_opts={"device": device}, |
|
savedir=os.path.join("/tmp", spk_model_name), |
|
) |
|
|
|
|
|
dataset = load_dataset("erenfazlioglu/turkishvoicedataset", split="train") |
|
example = dataset[304] |
|
|
|
return model, processor, vocoder, speaker_model, example |
|
|
|
model, processor, vocoder, speaker_model, default_example = load_models_and_data() |
|
|
|
def create_speaker_embedding(waveform): |
|
with torch.no_grad(): |
|
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device)) |
|
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) |
|
speaker_embeddings = speaker_embeddings.squeeze() |
|
return speaker_embeddings |
|
|
|
def prepare_default_embedding(example): |
|
audio = example["audio"] |
|
return create_speaker_embedding(audio["array"]) |
|
|
|
default_embedding = prepare_default_embedding(default_example) |
|
|
|
@spaces.GPU(duration = 60) |
|
def text_to_speech(text, audio_file=None): |
|
inputs = processor(text=text, return_tensors="pt").to(device) |
|
|
|
if audio_file is not None: |
|
|
|
waveform, sample_rate = sf.read(audio_file) |
|
if len(waveform.shape) > 1: |
|
waveform = waveform[:, 0] |
|
speaker_embeddings = create_speaker_embedding(waveform) |
|
else: |
|
|
|
speaker_embeddings = default_embedding |
|
|
|
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder) |
|
sf.write("output.wav", speech.cpu().numpy(), samplerate=16000) |
|
return "output.wav" |
|
|
|
iface = gr.Interface( |
|
fn=text_to_speech, |
|
inputs=[ |
|
gr.Textbox(label="Enter Turkish text to convert to speech"), |
|
gr.Audio(label="Upload a short audio sample of the target speaker (optional)", type="filepath") |
|
], |
|
outputs=gr.Audio(label="Generated Speech"), |
|
title="Turkish SpeechT5 Text-to-Speech Demo with Optional Custom Voice", |
|
description="Enter Turkish text, optionally upload a short audio sample of the target speaker, and listen to the generated speech using the fine-tuned SpeechT5 model." |
|
) |
|
|
|
iface.launch(share=True) |