Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
from mediapipe.tasks import python | |
from mediapipe.tasks.python import vision | |
from mediapipe.python._framework_bindings import image as image_module | |
_Image = image_module.Image | |
from mediapipe.python._framework_bindings import image_frame | |
_ImageFormat = image_frame.ImageFormat | |
import torch | |
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetInpaintPipeline, ControlNetModel | |
from PIL import Image | |
from compel import Compel | |
from diffusers import EulerDiscreteScheduler | |
# Device configuration | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Constants for colors | |
BG_COLOR = (0, 0, 0, 255) # gray with full opacity | |
MASK_COLOR = (255, 255, 255, 255) # white with full opacity | |
# Create the options that will be used for ImageSegmenter | |
base_options = python.BaseOptions(model_asset_path='emirhan.tflite') | |
options = vision.ImageSegmenterOptions(base_options=base_options, | |
output_category_mask=True) | |
# Initialize ControlNet inpainting pipeline | |
controlnet = ControlNetModel.from_pretrained( | |
'lllyasviel/control_v11p_sd15_inpaint', | |
torch_dtype=torch.float16, | |
).to(device) | |
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
'runwayml/stable-diffusion-v1-5', | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
).to(device) | |
# Set the K_EULER scheduler | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
# Function to segment hair and generate mask | |
def segment_hair(image): | |
rgba_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA) | |
rgba_image[:, :, 3] = 0 # Set alpha channel to empty | |
# Create MP Image object from numpy array | |
mp_image = _Image(image_format=_ImageFormat.SRGBA, data=rgba_image) | |
# Create the image segmenter | |
with vision.ImageSegmenter.create_from_options(options) as segmenter: | |
# Retrieve the masks for the segmented image | |
segmentation_result = segmenter.segment(mp_image) | |
category_mask = segmentation_result.category_mask | |
# Generate solid color images for showing the output segmentation mask. | |
image_data = mp_image.numpy_view() | |
fg_image = np.zeros(image_data.shape, dtype=np.uint8) | |
fg_image[:] = MASK_COLOR | |
bg_image = np.zeros(image_data.shape, dtype=np.uint8) | |
bg_image[:] = BG_COLOR | |
condition = np.stack((category_mask.numpy_view(),) * 4, axis=-1) > 0.2 | |
output_image = np.where(condition, fg_image, bg_image) | |
return output_image # Return the RGBA mask | |
# Function to inpaint the hair area using ControlNet | |
def inpaint_hair(image, prompt): | |
# Segment hair to get the mask | |
mask = segment_hair(image) | |
# Convert to PIL image for the inpainting pipeline | |
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
mask_pil = Image.fromarray(mask[:, :, :3]) | |
# Prepare the inpainting condition | |
image_np = np.array(image_pil).astype(np.float32) / 255.0 | |
mask_np = np.array(mask_pil.convert("L")).astype(np.float32) / 255.0 | |
image_np[mask_np > 0.5] = -1.0 # Set as masked pixel | |
inpaint_condition = torch.from_numpy(np.expand_dims(image_np, 0).transpose(0, 3, 1, 2)).to(device) | |
# Generate inpainted image | |
generator = torch.Generator(device).manual_seed(42) | |
output = pipe( | |
prompt=prompt, | |
image=image_pil, | |
mask_image=mask_pil, | |
control_image=inpaint_condition, | |
num_inference_steps=25, | |
guidance_scale=7.5, | |
generator=generator | |
).images[0] | |
return np.array(output) | |
# Gradio interface | |
iface = gr.Interface( | |
fn=inpaint_hair, | |
inputs=[ | |
gr.Image(type="numpy"), | |
gr.Textbox(label="Prompt", placeholder="Describe the desired inpainting result...") | |
], | |
outputs=gr.Image(type="numpy"), | |
title="Hair Inpainting with ControlNet", | |
description="Upload an image, and provide a prompt to inpaint the hair area using ControlNet.", | |
examples=[["example.jpeg", "dreadlocks"]] | |
) | |
if __name__ == "__main__": | |
iface.launch() | |