engrharis commited on
Commit
618f204
·
verified ·
1 Parent(s): 9f1b551

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from groq import Client, ModelType
3
+
4
+ # Replace with your Groq API key
5
+ GROQ_API_KEY = "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"
6
+
7
+ # Define a function to get chatbot response
8
+ def get_response(prompt):
9
+ client = Client(api_key=GROQ_API_KEY)
10
+ model = client.model(ModelType.Claude_V1) # Change model type if desired
11
+ response = model.generate(prompt)
12
+ return response.text
13
+
14
+ # Streamlit app layout
15
+ st.title("Interactive Chatbot")
16
+
17
+ # Input field for user message
18
+ user_input = st.text_input("You: ", key="user_input")
19
+
20
+ # Display chat history (optional, can be implemented with a list)
21
+
22
+ # Generate response if user enters something
23
+ if user_input:
24
+ # Get response from Groq API
25
+ bot_response = get_response(user_input)
26
+ st.write("Bot: ", bot_response)
27
+
28
+ # Deployment on Hugging Face (refer to their documentation)
29
+ # This code snippet is not included as it involves specific steps on their platform.
30
+ # You can find deployment instructions for Streamlit apps on Hugging Face Spaces here:
31
+ # https://docs.huggingface.com/notebooks/streamlit/
32
+
33
+ # Run the app
34
+ if __name__ == "__main__":
35
+ st.sidebar.title("Settings")
36
+ # Add any additional settings options here (e.g., model selection)
37
+ st.sidebar.write("Groq API Key: (hidden for security)")
38
+ st.sidebar.success("Connected to Groq!")
39
+ st.balloons() # Enable notification popups for user interaction
40
+ st.experimental_autogenerated_data_reports() # Enable data reports
41
+ st.server.main()