FactureOCR / doc.py
Soufiane
initial
8565879
raw
history blame
1.8 kB
import cv2
import base64
from utils import *
CIN = ["Nom complet", "Date de naissance", "Date de validité", "Lieu de naissance", "Numéro CIN"]
def extract_face(image, scale_factor=1.2):
# Load the pre-trained face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_alt.xml')
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = face_cascade.detectMultiScale(gray, scaleFactor=scale_factor, minNeighbors=5, minSize=(30, 30))
print(len(faces))
if len(faces) == 0:
print("No faces found")
return None
# Assume only one face in the image for simplicity
(x, y, w, h) = max(faces, key=lambda x: x[2])
# Expand the bounding box to include a slightly larger region
x -= int(0.1 * w)
y -= int(0.1 * h)
w += int(0.2 * w)
h += int(0.2 * h)
# Ensure the coordinates are within the image boundaries
x = max(x, 0)
y = max(y, 0)
w = min(w, image.shape[1])
h = min(h, image.shape[0])
# Extract the face region from the image
face = image[y:y+h, x:x+w]
# Convert the face to base64 string
_, encoded_image = cv2.imencode('.jpg', face)
encoded_image_str = base64.b64encode(encoded_image).decode('utf-8')
# Create a dictionary to store image information
image_info = {
"width": face.shape[1],
"height": face.shape[0],
"data": encoded_image_str
}
return image_info
if __name__ == '__main__':
lang = "french"
to_be_extracted = CIN
image_path = "./docs for ocr/CIN 2.png"
image = cv2.imread(image_path)
text_data = extract_data(lang, to_be_extracted, image)
print(text_data)
face_data = extract_face(image)