|
import gradio as gr |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
|
|
model_name = "enzer1992/AI-Guru" |
|
tokenizer = GPT2Tokenizer.from_pretrained(model_name) |
|
model = GPT2LMHeadModel.from_pretrained(model_name) |
|
|
|
def generate_text(prompt): |
|
inputs = tokenizer.encode(prompt, return_tensors="pt") |
|
outputs = model.generate(inputs, max_length=100, num_return_sequences=1) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text") |
|
interface.launch() |
|
|