Spaces:
Runtime error
Runtime error
import streamlit as st | |
from datetime import datetime | |
from modules.prediction import prepare, predict | |
STATUS_STOPPED = 120001 | |
STATUS_SUBMIT = 120002 | |
STATUS_ERROR = 120003 | |
has_prepared = False | |
st.session_state['running_status'] = STATUS_STOPPED | |
if not has_prepared: | |
print('>>> [PREPARE] Preparing...') | |
prepare() | |
has_prepared = True | |
st.title('Entity Referring Classifier') | |
st.caption('It knows exactly when you are calling it. - Version 2.0.1208.01') | |
st.markdown('---') | |
livedemo_col1, livedemo_col2, livedemo_col3 = st.columns([12,1,6]) | |
with livedemo_col1: | |
st.subheader('Live Demo') | |
with st.form("my_form"): | |
entity = st.text_input('Entity Name:', 'Jimmy') | |
sentence = st.text_input('Sentence Input:', 'Are you feeling good, Jimmy?', | |
help='The classifier is going to analyze this sentence.') | |
if st.form_submit_button('π Submit'): | |
st.session_state['running_status'] = STATUS_SUBMIT | |
if st.session_state['running_status'] == STATUS_STOPPED: | |
st.info('Type something and submit to start!') | |
elif st.session_state['running_status'] == STATUS_SUBMIT: | |
if predict(sentence, entity) == 'CALLING': | |
st.success('It is a **calling**!') | |
else: | |
st.success('It is a **mentioning**!') | |
st.caption(f'Submitted: `{sentence.lower()}` by `{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}`') | |
with livedemo_col2: | |
st.empty() | |
with livedemo_col3: | |
st.markdown(""" | |
#### Get Started | |
""") | |
st.markdown(""" | |
Hi! I'm the Entity Referring Classifier. | |
I can help you find out when you are calling it. | |
""") | |
st.markdown(""" | |
#### Terms | |
""") | |
st.markdown(""" | |
##### `Calling` | |
""") | |
st.markdown(""" | |
##### `Mentioning` | |
""") |