Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,805 Bytes
6137d3a 0e6708a 9177536 760fd59 9177536 0e6708a 6137d3a 0e6708a 760fd59 0e6708a fb0a5c2 0e6708a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import spaces
import gradio as gr
from util import imread, imsave, get_examples
import torch
def torch_compile(*args, **kwargs):
def decorator(func):
return func
return decorator
torch.compile = torch_compile # temporary workaround
default_model = 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c'
@spaces.GPU
def predict(filename, model=None, device=None, reduce_labels=True):
from cpn import CpnInterface
from prep import multi_norm
from celldetection import label_cmap
global default_model
assert isinstance(filename, str)
if device is None:
if torch.cuda.device_count():
device = 'cuda'
else:
device = 'cpu'
print(dict(
filename=filename,
model=model,
device=device,
reduce_labels=reduce_labels
), flush=True)
img = imread(filename)
print('Image:', img.dtype, img.shape, (img.min(), img.max()), flush=True)
if model is None or len(str(model)) <= 0:
model = default_model
img = multi_norm(img, 'cstm-mix') # TODO
m = CpnInterface(model.strip(), device=device)
y = m(img, reduce_labels=reduce_labels)
labels = y['labels']
vis_labels = label_cmap(labels)
dst = '.'.join(filename.split('.')[:-1]) + '_labels.tiff'
imsave(dst, labels)
return img, vis_labels, dst
gr.Interface(
predict,
inputs=[gr.components.Image(label="Upload Input Image", type="filepath"),
gr.components.Textbox(label='Model Name', value=default_model, max_lines=1)],
outputs=[gr.Image(label="Processed Image"),
gr.Image(label="Label Image"),
gr.File(label="Download Label Image")],
title="Cell Detection with Contour Proposal Networks",
examples=get_examples(default_model)
).launch()
|