File size: 6,730 Bytes
6137d3a
0e6708a
20b8a33
9177536
20b8a33
 
 
 
760fd59
9177536
 
 
20b8a33
9177536
 
20b8a33
9177536
0e6708a
 
20b8a33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e6708a
 
6137d3a
20b8a33
 
 
 
 
 
 
 
 
760fd59
 
20b8a33
 
0e6708a
 
fb0a5c2
 
 
 
 
 
20b8a33
 
 
 
0e6708a
 
20b8a33
 
 
 
 
 
 
 
 
0e6708a
20b8a33
0e6708a
 
 
 
 
 
20b8a33
 
 
 
 
 
 
 
 
 
 
0e6708a
20b8a33
 
 
 
 
0e6708a
20b8a33
0e6708a
20b8a33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import spaces
import gradio as gr
from util import imread, imsave, copy_skimage_data
import torch
from PIL import Image, ImageDraw
import numpy as np
from os.path import join


def torch_compile(*args, **kwargs):
    def decorator(func):
        return func

    return decorator


torch.compile = torch_compile  # temporary workaround

default_model = 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c'
default_score_thresh = .9
default_nms_thresh = np.round(np.pi / 10, 4)
default_samples = 128
default_order = 5

examples_dir = 'examples'
copy_skimage_data(examples_dir)
examples = [
    [join(examples_dir, 'bbbc039_test_00014.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
     default_nms_thresh, True, 64, True],
    [join(examples_dir, 'coins.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
     default_nms_thresh, True, 64, True],
    [join(examples_dir, 'cell.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
     default_nms_thresh, True, 64, True],
]


@spaces.GPU
def predict(
        filename, model=None,
        enable_score_threshold=False, score_threshold=.9,
        enable_nms_threshold=False, nms_threshold=0.3141592653589793,
        enable_samples=False, samples=128,
        use_label_channels=False,
        enable_order=False, order=5,
        device=None,
):
    from cpn import CpnInterface
    from prep import multi_norm
    from celldetection import label_cmap, to_h5, data, __version__

    global default_model
    assert isinstance(filename, str)

    if device is None:
        if torch.cuda.device_count():
            device = 'cuda'
        else:
            device = 'cpu'

    meta = dict(
        cd_version=__version__,
        filename=str(filename),
        model=model,
        device=device,
        use_label_channels=use_label_channels,
        enable_score_threshold=enable_score_threshold,
        score_threshold=float(score_threshold),
        enable_order=enable_order,
        order=order,
        enable_nms_threshold=enable_nms_threshold,
        nms_threshold=float(nms_threshold),
    )
    print(meta, flush=True)

    raw = img = imread(filename)
    print('Image:', img.dtype, img.shape, (img.min(), img.max()), flush=True)
    if model is None or len(str(model)) <= 0:
        model = default_model

    img = multi_norm(img, 'cstm-mix')  # TODO

    kw = {}
    if enable_score_threshold:
        kw['score_thresh'] = score_threshold
    if enable_nms_threshold:
        kw['nms_thresh'] = nms_threshold
    if enable_order:
        kw['order'] = order
    if enable_samples:
        kw['samples'] = samples
    m = CpnInterface(model.strip(), device=device, **kw)
    y = m(img, reduce_labels=not use_label_channels)

    dst_h5 = '.'.join(filename.split('.')[:-1]) + '.h5'
    to_h5(
        dst_h5, inputs=img, **y,
        attributes=dict(inputs=meta)
    )

    labels = y['labels']
    vis_labels = label_cmap(labels)

    dst_csv = '.'.join(filename.split('.')[:-1]) + '.csv'
    data.labels2property_table(
        labels,
        "label", "area", "feret_diameter_max", "bbox", "centroid", "convex_area",
        "eccentricity", "equivalent_diameter",
        "extent", "filled_area", "major_axis_length",
        "minor_axis_length", "orientation", "perimeter",
        "solidity", "mean_intensity", "max_intensity", "min_intensity",
        intensity_image=raw
    ).to_csv(dst_csv)

    return vis_labels, img, dst_h5, dst_csv


with gr.Blocks(title='Cell Segmentation with Contour Proposal Networks') as app:
    with gr.Row():
        gr.Markdown("<center><strong><font size='7'>"
                    "Cell Segmentation with Contour Proposal Networks 🤗</font></strong></center>")

    with gr.Row():
        with gr.Column():
            img = gr.components.Image(label="Upload Input Image", type="filepath", interactive=True,
                                      value=examples[0][0])
        with gr.Column():
            model_name = gr.components.Textbox(label='Model Name', value=default_model, max_lines=1)
            with gr.Row():
                score_thresh_ck = gr.components.Checkbox(label="Use custom Score Threshold", value=False)
                score_thresh = gr.components.Slider(minimum=0, maximum=1, label="Score Threshold",
                                                    value=default_score_thresh)
            with gr.Row():
                nms_thresh_ck = gr.components.Checkbox(label="Use custom NMS Threshold", value=False)
                nms_thresh = gr.components.Slider(minimum=0, maximum=1, label="NMS Threshold", value=default_nms_thresh)
            # with gr.Row():
            #     # The range of this would need to be model dependent
            #     order_ck = gr.components.Checkbox(label="Use custom Order", value=False)
            #     order = gr.components.Slider(minimum=0, maximum=1, label="Order", value=default_order)
            with gr.Row():
                samples_ck = gr.components.Checkbox(label="Use custom Sample Points", value=False)
                samples = gr.components.Slider(minimum=8, maximum=256, label="Sample Points", value=default_samples)
            with gr.Row():
                channels = gr.components.Checkbox(label="Allow overlapping objects", value=True)
            with gr.Row():
                clr = gr.Button('Reset')
                btn = gr.Button('Run')
    with gr.Row():
        with gr.Column():
            out_img = gr.Image(label="Processed Image")
        with gr.Column():
            out_vis = gr.Image(label="Label Image (random colors, transparent overlap)")
    with gr.Row():
        out_h5 = gr.File(label="Download Results as HDF5 File")
        out_csv = gr.File(label="Download Properties as CSV File")

    with gr.Row():
        gr.Examples(
            fn=predict,
            examples=examples,
            inputs=[img, model_name, score_thresh_ck, score_thresh, nms_thresh_ck, nms_thresh, samples_ck, samples,
                    channels],
            outputs=[out_vis, out_img, out_h5, out_csv],
            cache_examples=True,
            batch=False
        )

    btn.click(
        predict,
        inputs=[img, model_name, score_thresh_ck, score_thresh, nms_thresh_ck, nms_thresh, samples_ck, samples,
                channels],
        outputs=[out_vis, out_img, out_h5, out_csv]
    )
    clr.click(
        lambda: (
        None, default_score_thresh, default_nms_thresh, False, False, None, None, None, False, default_samples),
        inputs=[],
        outputs=[img, score_thresh, nms_thresh, score_thresh_ck, nms_thresh_ck, out_img, out_h5, out_vis, samples_ck,
                 samples]
    )
app.launch()