import celldetection as cd import numpy as np from skimage import img_as_ubyte, exposure from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True __all__ = ['normalize_img', 'normalize_channel', 'multi_norm'] def normalize_img(img, gamma_spread=17, lower_gamma_bound=.6, percentile=99.88): log = [] if img.dtype.kind == 'f': # floats if img.max() < 256: img = img_as_ubyte(img / 255) log.append('img_as_ubyte') else: v = 99.95 img = cd.data.normalize_percentile(img, v) log.append(f'cd.data.normalize_percentile(img, {v})') elif img.itemsize > 1: img = cd.data.normalize_percentile(img, percentile) log.append(f'cd.data.normalize_percentile(img, {percentile})') mean_thresh = np.pi * gamma_spread if img.mean() < mean_thresh: gamma = (1 - ((np.cos(1 / gamma_spread * img.mean()) + 1) / 2)) * (1 - lower_gamma_bound) + lower_gamma_bound log.append(f'(img / 255) ** {gamma}') img = (img / 255) ** gamma img = img_as_ubyte(img) return img, log def normalize_channel(img, lower=1, upper=99): non_zero_vals = img[np.nonzero(img)] percentiles = np.percentile(non_zero_vals, [lower, upper]) if percentiles[1] - percentiles[0] > 0.001: img_norm = exposure.rescale_intensity(img, in_range=(percentiles[0], percentiles[1]), out_range='uint8') else: img_norm = img return img_norm.astype(np.uint8) def multi_norm(img, method): if method == 'prov': img = normalize_channel(img) elif method == 'rand-mix' or method == 'cstm-mix': img0 = normalize_channel(img) img1, log = normalize_img(img) if method == 'rand-mix': alpha = np.random.uniform(0., 1.) else: is_grayscale = img.ndim == 2 or (img.ndim == 3 and img.shape[2] == 1) alpha = 0. if not is_grayscale: if img[..., 2].mean() > 200 and img[..., 2].std() < 20: alpha = 1. else: if img1.mean() < 45 and img1.std() < 33: alpha = .5 img = np.clip(alpha * img0 + (1 - alpha) * img1, 0, 255).astype(img0.dtype) else: img, log = normalize_img(img) return img