File size: 2,290 Bytes
0d688cd ba294b3 0d688cd bd8ed50 a5706ba 45d35e3 62bc2ef 2dae1fd 4006761 2dae1fd bd8ed50 62bc2ef bd8ed50 4006761 2dae1fd bd8ed50 62bc2ef bd8ed50 45d35e3 4006761 2dae1fd 45d35e3 bd8ed50 62bc2ef 248db6b 45d35e3 a5706ba 62bc2ef bd8ed50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
title: README
emoji: π
colorFrom: indigo
colorTo: yellow
sdk: static
pinned: false
---
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
<p class="lg:col-span-3">
The End-to-end Speech Challenge (ESC) is a benchmark for assessing ASR systems on a collection of eight speech recognition datasets. ESC consists of:
</p>
<a href="https://huggingface.co/datasets/esc-bench/esc-datasets" class="block overflow-hidden group">
<div class="flex items-center h-40 bg-[#ECFAFF] rounded-lg px-4 mb-2">
<pre
class="break-words leading-1 whitespace-pre-line text-xl text-gray-800">
π€ Datasets
</pre>
</div>
</a>
<a
href="https://huggingface.co/models?other=esc"
class="block overflow-hidden"
>
<div class="flex items-center h-40 bg-[#ECFAFF] rounded-lg px-4 mb-2">
<pre
class="break-words leading-1 whitespace-pre-line text-xl text-gray-800">
π Official Checkpoints
</pre>
</div>
</a>
<a
href="https://huggingface.co/spaces/esc-bench/ESC"
class="block overflow-hidden group"
>
<div class="flex items-center h-40 bg-[#ECFAFF] rounded-lg px-4 mb-2">
<pre
class="break-words leading-1 whitespace-pre-line text-xl text-gray-800">
π ESC Leaderboard
</pre>
</div>
</a>
<p class="lg:col-span-3">
The ESC datasets are sourced from 11 different domains and cover a range of audio and text distributions (speaking styles, background noise, transcription requirements). There is no restriction on architecture or training data: any system capable of processing audio inputs and generating the corresponding transcriptions is eligible to participate. The only constraint is that the same training and evaluation algorithms must be used across datasets and systems may not use any dataset-specific pre- or post-processing. The objective of ESC is to encourage the research of more generalisable, multi-domain ASR systems. <br />
<br />
ESC was proposed in ESC: A Benchmark For Multi-Domain End-to-End Speech Recognition by ... For more information, see the official submission on <a href="https://openreview.net/forum?id=9OL2fIfDLK" class="underline">OpenReview.net</a> or the blog post at <a href="https://openreview.net/forum?id=9OL2fIfDLK" class="underline">ESC Benchmark (TODO)</a>.
</p>
</div> |